
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010 657

HLS-l: A High-Level Synthesis Framework
for Latch-Based Architectures

Seungwhun Paik, Student Member, IEEE, Insup Shin, Student Member, IEEE, Taewhan Kim, Senior Member, IEEE,
and Youngsoo Shin, Senior Member, IEEE

Abstract—Level-sensitive latches are widely used in high-
performance custom designs while edge-triggered flip-flops are
predominantly used in application-specific integrated circuits.
We consider a latch as a basis for storage and address each step
of high-level synthesis (HLS), including scheduling, allocation,
and control synthesis. While the use of latches provides an oppor-
tunity to reduce the latency during the scheduling, the register
allocation has to take extra conflicts caused by latch into account,
and the control synthesis has to be tailored to support the latch-
based data-path. Optimization potentials specific to this HLS are
identified and solutions are proposed. Specifically, the register
allocation can be improved by refining the operation schedule in
a way to reduce the number of edges in a register conflict graph;
the latency can be reduced by adjusting the clock duty cycle in
a way to generate a tighter schedule. All the steps of HLS and
optimization procedures were integrated into a framework called
HLS-l. It was tested on benchmark designs implemented in
1.1-V, 45 nm complementary metal-oxide-semiconductor
technology. Compared to the conventional HLS, HLS-l was able
to reduce the latency by 18.2% on average with 9.2% less area
and 16.0% less power consumption. The application of HLS-l
to an industrial example is demonstrated through the design of
a module extracted from H.264/advanced video coding.

Index Terms—ASIC, dual-edge-triggered flip-flop, high perfor-
mance, high-level synthesis, latch.

I. Introduction

IT IS WELL-KNOWN that there is a large performance
gap between custom designs and application-specific inte-

grated circuit (ASIC) designs. Specifically, ASICs are rou-
tinely slower than their custom counterparts in the same
technology node by a factor of six or more [2]. Several factors
have been identified [2] which cause this large performance
gap: only a limited flavor of microarchitectures is used in

Manuscript received July 3, 2009; revised November 21, 2009. Current
version published April 21, 2010. This work was supported by the Korea
Science and Engineering Foundation (KOSEF) Grant, funded by the Ministry
of Education, Science and Technology (MEST), no. R01-2007-000-20891-0.
The work of T. Kim was supported by the Basic Science Research Program of
MEST (no. 2009-0091236). This paper [1] was presented in part at the Design,
Automation and Test in Europe Conference, Nice, France, April 20–24, 2009.
This paper was recommended by Associate Editor, S. Nowick.

S. Paik, I. Shin, and Y. Shin are with the Department of Electrical Engineer-
ing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon
305-701, Korea (e-mail: swpaik@dtlab.kaist.ac.kr; isshin@dtlab.kaist.ac.kr;
youngsoo@ee.kaist.ac.kr).

T. Kim is with the School of Electrical Engineering and Computer
Science, Seoul National University (SNU), Seoul 151-742, Korea (e-mail:
tkim@ssl.snu.ac.kr).

Digital Object Identifier 10.1109/TCAD.2010.2043588

ASICs, the timing overhead due to clock tree and registers
can be alleviated in custom designs but not in typical ASICs,
static complementary metal-oxide-semiconductor (CMOS) is
dominantly used in ASICs but high-speed dynamic logic is
also used in custom designs, and so on. Higher performance
has been mainly achieved by the technology scaling, but as
the CMOS scaling becomes very difficult and uneconomical
around the 22 nm node [3], it is important to extract higher
performance in ASIC designs by employing methodologies
used in the custom counterpart.

The timing overhead that stems from the clock tree and
registers is an important factor to address for high-performance
ASIC designs. ASICs typically have about 4 fanout-of-4 (FO4)
delays of clock skew and jitter, which can be cut down to
1 FO4 in custom designs [2]. Employing a low-skew clock
distribution network, e.g., buffered clock trees driving a clock
grid [4], or combined clock skew scheduling and clock tree
construction [5], may alleviate the timing overhead due to
clock tree.

Edge-triggered flip-flops are predominantly used in ASICs
as registers, which have three or four FO4 delays; high-speed
custom designs typically use level-sensitive latches, which
have two FO4 delays [6]. In the flip-flop-based design, each
combinational block between flip-flops can be isolated in
view of timing, making timing analysis and optimization very
convenient for synthesis-based ASICs. This is not the case
in the latch-based design, because some combinational blocks
may use more than the clock period to compute, which has to
be compensated for by some other blocks that use less than
the clock period. The transparency of latch, however, offers
flexibility in handling timing, which can be used to tolerate
clock skews or to distribute timing slacks to combinational
blocks for higher frequency.

Latch-based architectures have been used extensively in
custom designs [7]–[11] and even in some ASICs [12], [13].
Only a few papers, however, have been published on the use of
latches during high-level synthesis (HLS), which we review in
Section II; even their use is limited to the register allocation. In
this paper, we consider latches during HLS more radically, i.e.,
they are taken into account during the whole step of HLS. The
complicated timing behavior of latches is made manageable
through the proposed operation scheduling, register allocation,
and control synthesis; the key idea commonly carried in these
HLS steps is to prevent latches from being read and written
at the same time while latches are transparent.

0278-0070/$26.00 c© 2010 IEEE

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

We introduce a concept of phase step (p-step), which refers
to a clock phase, i.e., a period of the clock being high
or low. We show that using p-step, as opposed to using
the conventional clock step, as a time unit of the operation
scheduling provides flexibility that helps reduce the latency.
Care needs to be taken, however, in scheduling an operation
having the same variable as its input and output because
such a variable has a possibility of being read and written
simultaneously; this leads us to define the feasibility of a
schedule. List scheduling is taken as an example to extend
it toward the p-step based scheduling (Section III-A).

Due to the transparent nature of latch, extra edges are intro-
duced in a register conflict graph so that the same latch should
not be read and written at the same time. We show that some of
these edges can be removed, which helps reduce the number of
registers, by re-scheduling some of operations (Section III-B).

The p-step-based scheduling forces to generate control
signals at every clock phase. This is realized by using dual-
edge-triggered flip-flops (Section III-C).

The duty cycle, the proportion of the clock being high,
affects the p-step based scheduling, and thus it affects the
latency. The method to determine the duty cycle that leads to a
schedule of the minimum latency is proposed (Section IV). All
the aforementioned methods were integrated into HLS-l, and
the design flow based on it was developed starting from the be-
havioral description in VHDL down to the synthesized netlist.
Its application was demonstrated on behavioral benchmark
designs as well as an industrial example of H.264/advanced
video coding (AVC) in 45 nm technology (Section V).

Our main contributions are summarized as follows.
1) A concept of p-step, which provides the flexibility in the

operation scheduling that helps reduce the latency, and
its application to list scheduling (Section III-A).

2) The formulation of the register allocation for latch-based
registers, and refining schedule to improve the register
allocation (Section III-B).

3) Controller synthesis to support the p-step based schedule
by using dual-edge-triggered flip-flops (Section III-C).

4) Optimizing the clock duty cycle for a better operation
schedule (Section IV).

5) Extensive experimental results from commercial 45 nm
technology applied to behavioral benchmark designs to
assess HLS-l in terms of the latency, area, and power
consumption (Section V), as well as application of HLS-
l to an industrial example of H.264/AVC (Section VI-B).

The remainder of this paper is organized as follows. In the
next section, we briefly review related work. In Section III, we
address each step of HLS-l, namely the operation scheduling,
allocation, and control synthesis. The problem of optimizing
the clock duty cycle is presented in Section IV. Experimental
results are presented in Section V; the application of HLS-l
to an industrial example, as well as the design flow using
HLS-l, is discussed in Section VI. We draw a conclusion in
Section VII.

II. Related Works

HLS-l is related to HLS using high-performance microar-
chitectures and, in particular, to latch-based HLS, which we
review in this section.

Fig. 1. Example data-path.

A. High-Performance Microarchitectures for HLS

There have been several research efforts to encom-
pass various microarchitectures during HLS. Optimal se-
lection of the clock period [14], [15] has been stud-
ied to minimize a waste of timing slack. Chaining and
allowing multicycle operations are popular techniques to
make operation schedule tighter, which have been extended
to several directions [16]–[18]. A concept of complex func-
tional unit (FU) has been introduced [17] to enforce operation
chaining; this approach, however, limits potential FU sharings
and requires a library of large set of complex FUs to cover var-
ious chaining combinations. Multicycle execution of chained
operations has been combined with bit-level chaining [18],
which exploits bit-level parallelism of FUs based on bit-by-bit
computation, e.g., in a ripple carry adder; it, however, comes
at a cost of complex controller.

B. Latch-Based Architectures for HLS

The methods of replacing flip-flops with latches have been
proposed in [19], [20]. During the register allocation, they con-
vert as many flip-flops as possible to latches, while preserving
the original functionality, so that power consumption and area
can be reduced.

More recently, the latch replacement has been addressed
to improve timing yield [21]. Because latches are inherently
more robust to process variations than flip-flops are, the latch
replacement can improve the timing yield of designs.

However, these works consider latches only during the reg-
ister allocation after performing the conventional scheduling,
and thus do not take full advantage of latches during all the
steps of HLS, which we target in HLS-l.

III. High-Level Synthesis of Latch-Based

Architectures

A. Operation Scheduling Based on Phase Step

1) Phase Step: In the conventional HLS [22] using reg-
isters as storage, where registers are built from flip-flops, the
operation scheduling is performed in a unit of clock step, also
called a control step (c-step). Therefore, the execution delay
di of operation i is given as the number of c-steps it takes

di =

⌈
Di

T

⌉
Di = DFU(i) + Tcq + α · Tmux + Tsu (1)

where T is the clock period, DFU(i) is the maximum delay of
a FU that executes i, Tcq and Tsu are clock-to-Q delay and

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

PAIK et al.: HLS-L: A HIGH-LEVEL SYNTHESIS FRAMEWORK FOR LATCH-BASED ARCHITECTURES 659

Fig. 2. Execution delay of a multiplication using p-steps: (a) delay is four
p-steps when scheduled in the first p-step, (b) three p-steps when scheduled
in the second p-step.

setup time of a register, respectively, and Tmux is the delay of
a multiplexer. The number of multiplexers, α, on the timing
path is determined after resource allocation on all data-path
components. The controller delay can also be factored in (1)
through estimating its delay [23]; or, it can be assumed to be
negligible if all control signals are ready before data arrive
at the input of multiplexers, which can be done via adjusting
clock arrival times to the controller. Fig. 1 shows an example
data-path. Let T = 10 time units, Tcq = Tsu = Tmux = 1
time unit, and the numbers within FUs denote their delays
in time units; the multiplication is scheduled in the first two
c-steps because �(10 + 1 + 2 · 1 + 1)/10� = 2, which span the
time from t1 to t5; the addition, whose execution delay is 1
because �(5 + 1 + 1 + 1)/10� = 1, occupies the next c-step,
which is from t5 to t7.

If we use positive level-sensitive latches for the registers, the
multiplication can be initiated at any time between t1 and t2.
Since the data-path has to be synchronized with the controller,
e.g., the multiplexer select M1 has to be made available for
the register data to be steered to the multiplier, scheduling
operations at arbitrary time point may yield very complicated
controller. If we restrict operations to being scheduled only
at the clock edges, the multiplication, which needs 14 time
units for its execution, is now scheduled between t1 and t4
and the addition, which needs eight time units, is scheduled
between t4 and t6 provided that the duty cycle is 0.5. This
saves the amount of time corresponding to the period between
t6 and t7 compared to the schedule using flip-flops for registers.
Note that M3 is generated after the falling-edge of the clock
(t4) while M1 is generated after the rising-edge of the clock
(t1), i.e., the controller needs to generate control signals at
both the clock edges, which can be implemented by using
dual-edge-triggered flip-flops as we discuss in Section III-C.
A similar schedule can be derived if we stick to flip-flops for
registers but with twice the frequency, i.e., T = 5 time units;
this approach, however, comes at a cost of roughly twice the
power consumption of the clock network, more sequencing
overhead, and the lack of optimization potential that comes
from adjusting the duty cycle, which will be addressed in
Section IV.

As a unit of the operation scheduling, we introduce a
concept of phase step (p-step). In positive level-sensitive
latches, p-step refers to either a transparent phase, which is
the period of the clock being high, or a non-transparent phase,
which is the period of the clock being low; vice versa in
negative level-sensitive latches. A single c-step, therefore, is
equivalent to two consecutive p-steps. The execution delay di

Fig. 3. (a) Infeasible schedule when CRWO completes in the transparent
p-step; making it feasible (b) by scheduling it in the next p-step or (c) by
extending its execution delay.

is now given as the number of p-steps operation i takes. Let ri

be a residual delay, i.e., the remainder after Di is subtracted
by integer multiples of T , ri = Di mod T , and ϕ(i) be an index
of p-step when i is initiated. Then

di =

⎧⎨
⎩

2
⌊

Di

T

⌋
+ � ri

T
� (⌈

ri−W
T

⌉
+ 1

)
if ϕ(i) is odd

2
⌊

Di

T

⌋
+ � ri

T
� (⌈

ri−(T−W)
T

⌉
+ 1

)
otherwise

(2)

where W is a width of transparent phase with T − W being
a width of non-transparent phase. In (2), �ri/T � becomes 0
when ri = 0 and 1 otherwise, since ri < T ; the expression
�(ri −W)/T �+1 evaluates to 1 when ri < W and 2 otherwise,
and similarly for �[ri − (T − W)]/T � + 1, i.e., it evaluates
to 1 when ri < T − W and 2 otherwise. Note that if the
duty cycle W/T is 0.5, di is uniquely determined, otherwise
di takes different values depending on whether i is scheduled
in a transparent or in a non-transparent phase.

Example 1: Consider the multiplication in Fig. 2. Suppose
that T is 10 time units, W is 3 time units, and Di is 15
time units. The residual delay ri is 5 time units. When
the multiplication is scheduled in the first p-step, which is
transparent, di is four p-steps as computed by (2). However,
if it is scheduled in the second p-step as shown in Fig. 2(b),
di becomes three p-steps. �

2) Feasibility of Schedule and As-Soon-As-Possible
(ASAP)/As-Late-As-Possible (ALAP) Scheduling: In the p-
step-based scheduling, an operation with one of its input
operands being the same as its output operand, called a
concurrent read/write operation (CRWO), is not allowed to
complete its execution in a transparent p-step. Fig. 3(a) shows
an example; the output operand a is written to a register in
the third p-step, which is transparent; since a is also the input
operand, it triggers a new multiplication; if the output from
the multiplier (due to its min-delay) starts to appear within the
third p-step, the register is contaminated with wrong value.

This can be avoided if we schedule a CRWO such that it
completes in a non-transparent p-step as shown in Fig. 3(b);
a is not loaded into the register in the fourth p-step since it is
non-transparent. Another option to resolve the case of Fig. 3(a)
is to arbitrarily extend the execution delay by one p-step as
shown in Fig. 3(c) so that the operation can complete in a non-
transparent p-step. Note that the solution in Fig. 3(b) is not
always possible to achieve while the solution in Fig. 3(c) is.
For example, if W = 3 time units, T = 5 time units, and Di = 8
time units, an operation always completes in a transparent p-
step, thus increasing di is the only option.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Definition 1: An operation schedule is called feasible if and
only if all CRWOs complete their execution in non-transparent
p-steps.

Example 1 and (2) show that di can vary in the p-step-
based scheduling; thus, it raises a question of whether we
need to take the varying operation delay into account while
we perform the operation scheduling. Specifically, the multi-
plication completes its execution in the fourth p-step both in
Fig. 2(a) and (b), even though it is initiated in the first p-step
in the former and in the second in the latter. Since the first p-
step is empty in Fig. 2(b), which may be used for scheduling
other operations, the question therefore is whether Fig. 2(b)
always yields better schedule than Fig. 2(a) does in terms of
the latency (in resource-constrained scheduling) or in terms of
the total number of FUs (in latency-constrained scheduling).

Fortunately, we do not need to worry about the varying
operation delay for ASAP scheduling [24], which is usually
used as a basis of other scheduling algorithms such as list [26]
and force-directed scheduling [27]:

Proposition 1: In ASAP scheduling, scheduling an opera-
tion in the p-step l is not worse in terms of the latency than
scheduling it in the p-step l + 1, provided that the scheduling
is feasible.
The claim is true to ALAP scheduling [24].

Proposition 2: In ALAP scheduling, for a given latency
constraint, if scheduling an operation in the p-step l violates
the latency constraint, then scheduling it in the p-step k < l

also violates the latency constraint, provided that the schedul-
ing is feasible.

3) List Scheduling With P-Step: We address how the
conventional list scheduling [26] can be extended toward the
p-step-based scheduling; other scheduling algorithms such as
force-directed scheduling [27] and ILP-based scheduling [16]
can be handled similarly. Resource-constrained-list scheduling
is shown in Fig. 4, where ak denotes the maximum number
of FUs of type k that are available. The candidate operations
Ul,k are the operations that are ready to be scheduled in the
current p-step l (i.e., their predecessors are all scheduled and
completed their execution before l) and can be executed by
FU of type k (L4). The unfinished operations Tl,k are the
operations that are scheduled before l but do not complete
their execution in l, and thus occupy FUs of type k (L5). Due
to the resource constraint, a subset of candidate operations
Sk is selected (L6); this is done by a priority assigned to
each operation [24]. If Sk contains a CRWO (L7), we check
whether scheduling it in l yields its completion in a transparent
p-step (L8), which corresponds to the case of Fig. 3(a). We
then remove it from Sk (L9) so that it can be scheduled in
the next p-step [see Fig. 3(b)]; if it always completes in a
transparent p-step, which corresponds to its execution delay
when scheduled in l [denoted by di(l)] being different from
that when scheduled in l + 1 [denoted by di(l + 1)], we simply
increase its execution delay by one p-step (L10).

When we schedule each operation i ∈ Sk (L11), if di(l) =
di(l + 1) + 1 (see Fig. 2), we have an option to schedule it
in l or in l + 1. If we choose l + 1, the current p-step is not
filled in with i; thus, we should select other operation j, which
is not in Sk but in Ul,k, having a lower priority than i to be

Fig. 4. Pseudo-code of (a) resource-constrained and (b) latency-constrained
list scheduling algorithms.

scheduled in l. This, however, may forbid i to be scheduled
in l + 1 since j already occupies one of FUs; this in turn may
increase the latency rather than decrease since operations of a
higher priority are scheduled in the later p-steps. Thus, all the
operations in Sk are scheduled in the current p-step l (L11).

Example 2: Consider a data-flow graph (DFG) shown
in Fig. 5(a). Suppose that T is ten time units, W is seven
time units, and the execution delay of multiplier, adder,
and subtractor are 16 time units, 12 time units, and ten
time units, respectively. Each type of FU can be used just
once due to the resource constraint. The result produced by
resource-constrained-list is shown in Fig. 5(b). Operation 1
is scheduled in the second, not in the first, p-step because
it is a CRWO. Operation 5 is also a CRWO; it is scheduled
in the first p-step with its execution delay extended because
otherwise it always completes in a transparent p-step [recall
Fig. 3(c)]. Since operation 1 is not allowed in the first p-step,
we may consider operation 4 instead, even though 4 has a
lower priority. This, however, increases the latency as shown
in Fig. 5(c), because operation 1, which is more important in
the latency, has to be delayed. �

Latency-constrained list scheduling latency-constrained-list
is shown in Fig. 4, where λ is the latency constraint as the
number of p-steps; overall, the algorithm is very similar to the
conventional c-step-based list scheduling. Note that if di(l) =
di(l + 1) + 1 for some operation i ∈ Ul,k, which corresponds to

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

PAIK et al.: HLS-L: A HIGH-LEVEL SYNTHESIS FRAMEWORK FOR LATCH-BASED ARCHITECTURES 661

Fig. 5. (a) Example DFG. (b) Result produced by resource-constrained-list. (c) Schedule when operation 4 is scheduled before operation 1.

Fig. 6. (a) Variables a and b cannot share a register. (b) a and b can share a register when the adder completes its execution in a non-transparent p-step.
(c) a and c (as well as a and b) cannot share a register. (d) a and c (as well as a and b) can share a register when two adders complete their execution in a
non-transparent p-step.

Fig. 2, and if the latest possible start p-step of i determined by
ALAP is l + 1 (L15), it is scheduled in l only if there are re-
sources available to use (L21), otherwise it is scheduled in l+1.

B. Allocation

1) Register Allocation: The register allocation for the con-
ventional flip-flop-based registers is formulated as the vertex
coloring problem on a register conflict graph GR. Each vertex
in GR corresponds to the lifetime of a variable, and there
is an edge between two vertices if their lifetimes overlap. If
each of all lifetimes is a continuous interval, GR belongs to
an interval graph, which can be colored optimally by using
left-edge algorithm [28], [29]. For the other cases, we resort
to a heuristic [30].

The latch-based register allocation problem (under the p-
step-based scheduling) can also be formulated in the same way,
except that we have two extra conditions that forbid register
sharing.

1) Input and output operands of the same operation cannot
share a register if the operation completes its execution
in a transparent p-step.

2) Input and output operands of two different operations,
respectively, cannot share a register if they complete
their execution in the same transparent p-step.

The first condition is similar to the case of CRWO (see
Fig. 3) except that input and output operands are different
variables. Fig. 6(a) shows an example. Variable b is loaded in
the second p-step, which is transparent; therefore, if it shares
a register with a, the value a is replaced by b, which triggers a
new addition; if a new output from the adder (due to its min-
delay) starts to appear within the second p-step, the register
is contaminated with the wrong value. To forbid register
sharing between a and b, even though their lifetimes do not
overlap, we introduce an extra edge in GR between the vertices
corresponding to a and b as shown in Fig. 6(a). It should be
noted that this extra edge makes GR a non-interval graph,
thus forces us to use a heuristic coloring algorithm. If the
adder completes its execution in the third p-step, which is non-
transparent, and a controller is made to generate load enable
only in that p-step as shown in Fig. 6(b), b is loaded only
after the fourth p-step begins; therefore a and b can share
a register. Note that the register sharing between a and b is
always disallowed in the c-step-based scheduling; thus, the p-
step-based scheduling helps in the register allocation as well
as in reducing the latency.

Fig. 6(c) shows an example of the second condition. Vari-
able c, the output of the second adder, is loaded in the second
p-step, which is transparent; therefore, if it shares a register
with a, the input of the first adder that also completes in the

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

662 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Fig. 7. Algorithm to refine schedule to reduce the extra edges of GR.

second p-step, the value a is replaced by c, which triggers
a new addition in the first adder thereby causing a similar
problem as in Fig. 6(a). This can be resolved by adding an
extra edge between the vertices corresponding to a and c. Note
that when the second condition happens, the first condition
also happens, which is why we have an extra edge between
a and b as well. If the first adder completes its execution
one or more p-steps earlier than the second adder does, a

and c can share a register. Similar to Fig. 6(b), if two adders
complete their execution in a non-transparent p-step as shown
in Fig. 6(d) with load−enable being generated only in that
p-step, a and c can share a register as well.

2) Refining Schedule to Improve Register Allocation: The
register allocation is typically performed after the operation
scheduling. Fig. 6, however, implies that if we can make a
slight change on a schedule so that some cases as (a) are
refined to (b) and some as (c) to (d), we can reduce the
number of extra edges in GR, which helps reduce the number
of registers during the register allocation.

The algorithm refine-schedule is shown in Fig. 7. We first
create a register conflict graph (L1); there are two groups
of edges, one group Eo due to the overlap of lifetimes and
the other Ee having extra edges (see Fig. 6). A list L of
vertices, each of which is an incident with at least one extra
edge from Ee, indicating a candidate for refinement, are
derived (L2). We heuristically select the vertex of maximum
degree from L (L4), since vertices of larger degree are more
difficult to color, i.e., they are likely to increase the number
of registers. We then try to move the operation (L5) that
produces a variable corresponding to the selected vertex,
denoted by producer(v), one p-step earlier or later (so that
producer(v) can complete its execution in a non-transparent
p-step), if this move does not interfere with the predecessors or
successors of producer(v). If the move violates the resource
or the latency constraint, it is canceled (L6); otherwise the
extra edges that become invalid due to the move are removed
from Ee (L7) and GR is updated (note that there can be
a change in Eo as well after the move). The process (L4–
L7) is repeated until L becomes empty. The new GR is
then submitted to the vertex coloring (L8) for the register
allocation.

The results by refine-schedule on HLS benchmark de-
signs [31] are shown in Table I, where the first two columns
are the name and the resource constraint (as the number of
multipliers and adders) for resource-constrained-list. The third

column denotes the number of vertices of GR. Columns 4–
6 are the numbers without performing refine-schedule, where
the number of registers is obtained from the heuristic col-
oring [30]; the next three columns report the difference of
corresponding numbers after refine-schedule.

Since some operations are moved as a result of refine-
schedule, there are slight changes in the overlap of lifetimes
(�|Eo|). The decrease of extra edges (�|Ee|) is dependent
on the operation schedule, i.e., smaller decrease for a tight
schedule. The change in the number of registers (�Reg.) is,
however, very marginal. This is understandable if we check the
number of registers without any extra edges, i.e., the vertex
coloring of G′

R = (V, Eo), which is shown in the last column
as a difference from the sixth column; this can serve as a loose
lower bound for the number of registers obtained by refine-
schedule since ignoring extra edges is not implementable.
Therefore, even though we may consider a radical approach
such as a combined scheduling and register allocation rather
than using the simple heuristic refine-schedule, there is not
much room for improvement.

To assess our register allocation (called RA-l), we use the
method of [20] (called RA-LT) as a reference of comparison.
RA-LT modifies the lifetime of variables by increasing all
lifetimes by one c-step, at a cost of increase in the number of
registers, so that latches hold their values one more cycle after
they are last used. This allows all the flip-flops to be safely
replaced by latches. The results of two register allocation
methods are compared in Table II; column 3 reports the
number of registers from RA-l, which was performed after
refine-schedule; columns 4 and 5 show the number of registers
from RA-l and its difference from that of RA-l, respectively.
RA-l achieves smaller numbers of registers in many circuits;
this is because we consider the conflict of latch sharing during
scheduling step so that such conflict can be minimized and
conflict is assumed only when it is necessary (see Fig. 6)
while [20] forces conflict between all pairs whose lifetimes
abut.

3) Allocation of Functional Units and Connections: The
allocation of FUs is also formulated as the vertex coloring on
a resource conflict graph [25] for each type of operation; each
vertex in one of these graphs corresponds to an operation, and
there is an edge between two vertices if they cannot share the
same FU, i.e., if there is an overlap of p-steps when they use
their FUs.

The connection allocation uses multiplexers (or buses) and
wires to connect registers to FUs and FUs back to registers.
It is also formulated as the vertex coloring on a connection
conflict graph for each destination of data transfer, which
is either FU or register. The connections of the same color,
i.e., data transfers that can be shared, are routed to the same
destination using a multiplexer.

Multiplexers take a good portion of total chip area and
power consumption; it is thus important to minimize the
number of multiplexers as well as the size of each multiplexer.
Optimizing multiplexers can be performed either during FU
and register allocation [32] or after these allocations are
done [33]. We used a heuristic [33] that tries to detect and
remove redundant connections to multiplexers, which help

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

PAIK et al.: HLS-L: A HIGH-LEVEL SYNTHESIS FRAMEWORK FOR LATCH-BASED ARCHITECTURES 663

TABLE I

Register Allocation With and Without Refine-Schedule

Without Refine-Schedule With Refine-Schedule �Reg. With
Bench. (*, +) |V | |Eo| |Ee| Reg. �|Eo| �|Ee| �Reg. (V, Eo)
Iir7 (1, 1) 36 182 19 22 −4 −10 0 −1

(2, 1) 36 233 10 24 −1 −2 0 −1
(2, 2) 36 224 12 24 −1 −2 0 −1

Fir11 (1, 1) 37 330 17 19 −7 −8 0 −1
(2, 1) 37 318 20 20 −2 −2 0 −2

Fir7 (1, 1) 23 200 15 18 1 −7 0 −1
(2, 1) 23 211 4 17 0 0 0 0
(2, 2) 23 201 6 18 0 0 0 −1

Elliptic (1, 1) 44 509 25 19 0 0 0 −1
(1, 2) 44 476 12 18 −2 −2 0 0

Lattice (1, 1) 32 237 20 13 −2 −4 0 0
(2, 1) 32 210 28 13 0 0 0 −1

Volterra (1, 1) 46 344 38 15 −3 −14 0 −1
(2, 1) 46 347 39 16 −7 −6 0 −2
(3, 1) 46 359 79 17 0 −2 0 −3

Wavelet (1, 1) 66 881 27 32 −2 −26 −1 −1
(2, 2) 66 898 42 34 −12 −30 −1 −2
(3, 2) 66 965 55 36 −1 −2 0 −2

Wdf7 (1, 1) 66 1377 10 33 0 0 0 0
(2, 2) 66 1357 40 34 −4 0 0 0
(3, 2) 66 1328 47 35 1 −3 0 −1

Ar (1, 1) 44 378 9 16 −2 −2 0 0
(2, 1) 44 365 16 17 −4 −2 −1 −1
(2, 2) 44 361 37 17 −4 −2 −1 −1

Diffeq (1, 1) 18 72 4 12 0 0 0 0
(2, 1) 18 72 8 13 2 −5 −1 −1
(2, 2) 18 71 11 13 2 −5 −1 −1

TABLE II

Comparison of RA-l and RA-LT [20]

RA-l RA-LT
Benchmark (∗, +) # Reg. # Reg. RA-LT − RA-l
Iir7 (1, 1) 22 23 1

(2, 1) 24 25 1
(2, 2) 24 25 1

Fir11 (1, 1) 19 19 0
(2, 1) 20 20 0

Fir7 (1, 1) 18 18 0
(2, 1) 17 19 2
(2, 2) 18 20 2

Elliptic (1, 1) 19 20 1
(1, 2) 18 21 3

Lattice (1, 1) 13 14 1
(2, 1) 13 14 1

Volterra (1, 1) 15 15 0
(2, 1) 16 16 0
(3, 1) 17 17 0

Wavelet (1, 1) 31 32 1
(2, 2) 33 34 1
(3, 2) 36 35 −1

Wdf7 (1, 1) 33 34 1
(2, 2) 34 36 2
(3, 2) 35 36 1

Ar (1, 1) 16 17 1
(2, 1) 16 17 1
(2, 2) 16 17 1

Diffeq (1, 1) 12 14 2
(2, 1) 12 14 2
(2, 2) 12 14 2

Average 1

reduce the size of multiplexers; an example of such redundant
connections is two variables stored in the same register, but
routed to different operands of the same FU.

C. Control Synthesis

The control synthesis is responsible for generating control
signals for the data-path, such as a multiplexer select, a
function select of multifunction units such as ALU, and a
load-enable for registers. This is accomplished by describing
the behavior of a controller as a state transition graph (STG)
followed by the conventional sequential and logic synthesis.
The state corresponds to a c-step in the conventional HLS;
it corresponds to a p-step in our approach, meaning that we
need twice the number of states in STG for the same latency
of schedule. Since the number of flip-flops to implement STG
of n states is at least �log2 n�, we need one more flip-flop in
our controller.

Since the controller needs to generate control signals at both
edges of the data-path clock, we either have to use a separate
clock for the controller with twice the frequency of data-path
clock or use a dual-edge-triggered flip-flop (DETFF)1 with the
same data-path clock. Note that the former approach can be
used only when the duty cycle W/T is 0.5, because otherwise
one of the edges of the data-path clock is not synchronized

1DETFF is triggered, thus launches and captures data, at both the clock
edges; the conventional flip-flop, which is triggered either at the rising-edge
or at the falling-edge of the clock but not at both, is called a single-edge-
triggered flip-flop (SETFF) [34].

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

664 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Fig. 8. Latch-mux implementation of D-type DETFF [35].

Fig. 9. Different schedules for different duty cycles for T = 10 time units.
(a) W = 2 time units. (b) W = 7 time units. (c) W = 3 time units.

with the controller clock; there is also a potential to reduce the
latency by adjusting the duty cycle as presented in Section IV.
This leads us to adopt the latter approach for implementing
the controller.

There are various implementations of DETFF [34], but we
select the latch-mux structure [35] for its relatively low se-
quencing overhead. Fig. 8 shows the latch-mux style DETFF;
it was sized so that its timing parameters are comparable to
those of its SETFF counterpart as shown in Table III, which
allows us to simply substitute DETFFs for SETFFs in the
original synthesized gate-level netlist of the controller (see
overall design flow of HLS-l in Section VI).

IV. Optimizing Duty Cycle to Improve Schedule

The duty cycle (W/T) is typically 0.5. However, the clock
with the duty cycle other than 0.5 can be equally well
generated without significant overhead [36]. This provides us
the opportunity to minimize the latency because the p-step
based execution delay (2) is a function of W for a fixed T . For
example, in Fig. 9, if W is too small [Fig. 9(a)], the execution
delays of shaded multipliers are all four p-steps, which yields
the latency of ten p-steps. For large value of W shown in
Fig. 9(b), only one multiplier takes four p-steps, but the latency
is still nine p-steps. Fig. 9(c) shows the best schedule having
eight p-steps. Using the duty cycle other than 0.5 forces the
controller to have smaller delay, because the combinational
logic in a DETFF-based implementation is constrained by
the smaller of a transparent or a non-transparent phase of
the clock. This, however, is not a significant problem, since
typically the controller delay is already very small.

The algorithm optimize-duty-cycle is shown in Fig. 10. It
seeks W that minimizes the latency for a given T . We have

Fig. 10. (a) An algorithm to find an optimal duty cycle and (b) a heuris-
tic algorithm to determine the duty cycle when the optimal solution is
intractable.

TABLE III

Comparing Timing Parameters (in ps) of D-Type SETFF

and DETFF in 45-nm Technology, Vdd = 1.1-V

SETFF DETFF
Rising-Edge Falling-Edge

Setup time 14.0 18.4 14.2
Hold time −10.8 −13.4 −11.7
Clock-to-Q delay 61.5 58.7 70.0

a better chance to minimize the latency when each operation
has a minimum execution delay, even though achieving the
minimum latency is not guaranteed because the scheduling
problem, which determines an exact latency, belongs to the
class of NP-complete problems in general. For each operation
i, we want to determine the values of W , denoted by Wi,
minimizing di (L1–L5). From (2), di becomes minimum if
residual delay ri is 0 regardless of the values of Wi; thus Wi

can take any value from 0 to T (L2). When ri is not 0 (L3),
meaning that �ri/T � evaluates to 1, di is minimized when both
�(ri−Wi) / T � and �[ri−(T −Wi)] / T � become 0, which imply
ri − Wi < 0 and ri − (T − Wi) < 0. Solving for Wi yields

ri < Wi < T − ri (3)

provided that ri < T − ri, i.e., ri < T/2 (L4). If ri > T/2
(L5), either �(ri − Wi) / T � or �[ri − (T − Wi)] / T � can be
made 0 but not both, which implies that Wi consists of two
intervals; one from 0 to T − ri and the other from ri to T . In
other words, di is unique when ri < T/2; otherwise, di varies
depending on whether i is scheduled in a transparent or in a
non-transparent p-step.

Once we determine Wi that minimizes the execution delay
of i for all the operations, we form their intersection, which

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

PAIK et al.: HLS-L: A HIGH-LEVEL SYNTHESIS FRAMEWORK FOR LATCH-BASED ARCHITECTURES 665

then becomes W (L6). If W is not empty and consists of a
single continuous interval, any value from W yields the same
schedule for a given scheduling method, thus yields the same
latency. If W consists of more than one interval, it can be
readily shown that the number of intervals is exactly two. The
value from each interval yields different schedules, because at
least one operation i has ri > T/2, i.e., its execution delay
is not unique (recall L5). In this case, therefore, we perform
scheduling twice and select the one with a smaller latency.

If the intersection is empty (L7), there is no such W that
minimizes the execution delay of all the operations. Thus, the
problem now becomes intractable, because we cannot choose
W minimizing the latency unless we perform the operation
scheduling for every possible W value. The duty cycle, in this
case, is determined by a heuristic algorithm heuristic-duty-
cycle. Initial scheduling is performed with any value of W ,
say T/2 (L8). Then a weight, weighti, is assigned to each
operation i (L10–L12), which determines a priority of its Wi

being considered when we decide on the value of W . For this
purpose, we find a list oci of operations (including i itself)
that are assigned to the same type of FU and have a zero
slack (L10), i.e., operations cannot be moved without altering
the schedule of other operations. The weighti is chosen as
the cardinality of oci (L11), since those operations with more
elements in oci are more likely to increase the latency. If
ri < T/2, the weight is made bigger (L12) because, when
Wi is reflected in deciding W , di becomes unique (recall L4),
which helps reduce the latency. We form the intersection of
Wi starting from i having the largest weighti unless taking an
intersection with Wi does not yield an empty interval (L14 and
L15).

Example 3: Consider an example in Fig. 9. Following L1
to L5 in Fig. 10 yields

W1 = [3, 7] W2 = [0, 10]
W3 = [0, 3] ∨ [7, 10] W4 = [0, 3] ∨ [7, 10]
W5 = [3, 7].

Taking their intersections (L6) gives W = [3, 3] ∨ [7, 7].
Fig. 9(c) shows the schedule for W = 3 time units and Fig. 9(b)
for W = 7 time units, and thus we select the former. �

V. Experimental Results

We carried out experiments on a set of behavioral bench-
mark designs [31] to assess the effectiveness of HLS-l, which
integrates the procedures presented in Sections III and IV.
It was also applied to a module extracted from H.264/AVC
to demonstrate the application of HLS-l to industrial designs.
HLS-l was implemented in C under Centos 5.0; it takes a
behavioral VHDL as an input and outputs the register transfer
level (RTL) description of the data-path and the controller,
which is then synthesized [37] in a commercial 1.1-V, 45 nm
bulk CMOS technology (see Fig. 14). The conventional c-step
based HLS, which we call HLS, was also implemented as a
reference of comparison.

Table IV summarizes circuit elements used in the exper-
iment, each one with its area and delay. For all benchmark
designs in Table V, we used 4.4 ns of the clock period for
the operation scheduling; this is slightly larger than the maxi-

TABLE IV

Area and Delay of (32-Bit) Circuit Elements Used in the

Experiment

Circuits Area (µm2) Delay (ps)
Adder/subtractor 355 3417
Multiplier 2398 5086
F/F register 189 75/65
Latch register 138 61/60
2-to-1 MUX 65 68
10-to-1 MUX 457 293

Register delay is denoted by clock-to-Q delay/setup time.

mum delay along the data-path consisting of adder/subtractor,
registers, and two 10-to-1 multiplexers, which is 3417 + 61 +
60 + 2 · 300 = 4138 ps. The exact number of inputs of each
multiplexer and the number of multiplexers along the data-
path can only be determined after the register allocation and
the connection allocation; thus, two 10-to-1 multiplexers are
assumed as an upper bound for the delay through multiplexers.
The clock period is adjusted for each design once the timing
analysis is performed on the synthesized gate-level netlist.

Since the adder/subtractor dictates the clock period, any
operation that is assigned to it always takes a single clock
period, i.e., two p-steps. Therefore, the optimum duty cycle is
determined by the multiplier alone. The maximum data-path
delay through the multiplier is 5086+61+60+2·300 = 5807 ps;
its residual delay is thus 5807 − 4400 ≈ 1400 ps, meaning
that the optimum duty cycle is simply any value between
0.32 (1.4 / 4.4) and 0.68 [(4.4 − 1.4)/4.4] for all benchmark
examples (see L4 of Fig. 10). We will consider more variety
of FUs to see the effect of the optimum duty cycle on the
latency in Section VI-B.

A. Latency

We compared the latency obtained by HLS-l and HLS
under the same resource constraints; resource-constrained-list
in Fig. 4 is used for HLS-l and the conventional resource-
constrained list scheduling [26] is used for HLS. The compar-
isons are summarized in Table V. The second column shows
the resource constraint, expressed as the number of multipliers
and adder/subtractors. The results produced by HLS are shown
in the next three columns, and the results from HLS-l are
shown in the following three columns. The last three columns
show the reduction in the clock period, the latency in the
number of c-steps, and the latency in ns achieved by HLS-l
over HLS.

The clock period (T) is the maximum latch to latch delay
in HLS-l and the maximum flip-flop to flip-flop delay in
HLS, which were reported by the timing analysis [38] on the
gate-level netlist. It has similar values in HLS-l and HLS,
even though latch has a lower sequencing overhead than flip-
flop. This makes sense because the sequencing overhead takes
relatively small proportion of the clock period (see Table IV).

HLS-l reports the latency (L) as the number of p-steps,
which is rounded up to the number of c-steps for comparison
to HLS. The latency in ns, which is the product of T and L,
is reduced by 18.2% on average as shown in the last column;
L is reduced by 3.8 c-steps and T is reduced by 0.15 ns, on

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

666 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

TABLE V

Comparison of HLS and HLS-l

Resource HLS HLS-l Savings
Benchmark Constraint T L T · L T L T · L �T �L �(T · L)

(*, +) (ns) (c-step) (ns) (ns) (c-step) (ns) (ns) (c-step) (%)
Iir7 (1, 1) 3.9 31 122 3.7 24 88 0.3 7 27.9

(2, 1) 3.9 20 79 3.9 18 70 0.1 2 11.6
(2, 2) 4.0 18 72 3.9 16 63 0.1 2 12.9

Fir11 (1, 1) 4.0 23 92 3.4 18 61 0.6 5 33.3
(2, 1) 3.7 13 48 3.7 12 45 0.0 1 8.2

Fir7 (1, 1) 3.8 16 61 3.7 14 51 0.2 2 16.6
(2, 1) 3.7 11 41 3.9 10 39 −0.1 1 5.7
(2, 2) 3.8 9 34 3.8 8 30 0.0 1 11.3

Elliptic (1, 1) 4.3 28 121 4.0 28 111 0.3 0 7.9
(1, 2) 4.2 22 92 4.0 19 75 0.2 3 18.4

Lattice (1, 1) 3.9 20 79 3.7 16 59 0.2 4 24.7
(2, 1) 3.9 12 46 3.8 11 42 0.1 1 9.8

Volterra (1, 1) 3.8 36 138 3.7 28 102 0.2 8 25.7
(2, 1) 4.0 20 79 3.7 16 60 0.2 4 24.5
(3, 1) 3.9 15 58 3.9 14 54 0.0 1 7.4

Wavelet (1, 1) 3.9 57 224 3.6 43 157 0.3 14 30.1
(2, 2) 3.9 30 116 3.8 23 88 0.1 7 24.3
(3, 2) 4.0 21 84 3.9 17 66 0.1 4 21.1

Wdf7 (1, 1) 4.1 39 160 4.0 29 115 0.1 10 28.2
(2, 2) 4.1 20 83 3.9 17 66 0.3 3 20.1
(3, 2) 4.0 18 72 3.9 16 63 0.1 2 13.3

Ar (1, 1) 4.0 36 143 3.8 26 99 0.2 10 30.5
(2, 1) 3.9 21 82 3.8 18 68 0.2 3 17.6
(2, 2) 3.9 19 74 3.7 16 59 0.2 3 19.3

Diffeq (1, 1) 3.8 15 57 3.7 13 48 0.1 2 15.2
(2, 1) 3.8 11 42 3.7 10 37 0.1 1 11.2
(2, 2) 3.8 9 34 3.6 8 29 0.1 1 13.7

Average 0.15 3.8 18.2

T is clock period, L is the latency in the number of c-steps, and T · L corresponds to the latency in ns.

Fig. 11. Latency (a) as the number of c-steps and (b) as ns for design Iir7
for the varying clock period.

average. The extent of saving of each benchmark is determined
by the number of multiplications on a critical path, a chain of
operations that dictates the latency, because we take advantage
of the p-step-based scheduling in multiplications but not in
additions/subtractions (a multiplication takes three p-steps in
HLS-l; it takes two c-steps, equivalent to four p-steps, in HLS).
Design Fir11 with one multiplier and one adder/subtractor
achieves the most saving as its critical path consists of 11 mul-
tiplications and one addition. For the same resource constraint,
Elliptic cannot benefit from using the p-step-based scheduling,
in terms of latency in c-step, because its critical path has 26
additions/subtractions but only one multiplication; its latency,

Fig. 12. Comparison of area of designs produced by HLS (left-hand bars)
and HLS-l (right-hand bars) for one multiplier and one adder/subtractor as a
resource constraint.

however, is still reduced due to the low sequencing overhead
of latches.

Latency strongly depends on the selection of the clock
period [14], [15]. We performed HLS and HLS-l on Iir7
with two multipliers and two adder/subtractors as the resource
constraint while we change the clock period from 1 ns to 9 ns
with the duty cycle fixed at 0.5; we did not perform operation
chaining in this example. Fig. 11(a) shows the latency as the
number of c-steps and Fig. 11(b) as ns. The number of c-steps
naturally decreases with the increasing clock period, but, in
terms of ns, there are several local minima. The clock period

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

PAIK et al.: HLS-L: A HIGH-LEVEL SYNTHESIS FRAMEWORK FOR LATCH-BASED ARCHITECTURES 667

Fig. 13. Comparison of normalized (a) dynamic-power and (b) static-power consumption of designs produced by HLS (left-hand bars) and HLS-l (right-hand
bars) for one multiplier and one adder/subtractor as a resource constraint.

we used for the experiment, 4.4 ns, is one of local minima,
which justifies our selection of the clock period. The curves
clearly show the benefit of HLS-l over HLS.

B. Area

The areas of each design, which is the sum of the areas of all
the cells after logic synthesis, produced by HLS and HLS-l are
compared; in Fig. 12, we report the area of designs with one
multiplier and one adder/subtractor as a resource constraint.

The area is reduced by 9.2% on average, where saving
mainly comes from registers. Note that the number of registers
itself increases in HLS-l due to extra edges introduced in
the register conflict graph, even though the extent of increase
is very marginal as discussed in Section III-B1. Due to the
smaller area of latch, however, registers produced by HLS-l
occupy 23.5% less area on average than those produced by
HLS. The area of controller increases by 10.6% on average due
to the use of DETFFs and more number of states in HLS-l; the
controller, however, occupies small proportion of the total area.

C. Power Consumption

The dynamic-power and static-power consumption are re-
ported in Fig. 13, where the numbers are normalized to the
power consumption of designs produced by HLS. The dynamic
consumption is caused by switching computation; short-circuit
current and leakage current constitute static consumption. The
power consumption was obtained by simulating each circuit
with a fast transistor-level circuit simulator [39] 100 times with
different random input vectors and taking their average. Note
that average power consumption during the same amount of
time is compared in Fig. 13, meaning that the design produced
by HLS-l is simulated for the amount of time equal to the
latency of the same design produced by HLS.

The dynamic power is reduced by 16.6% on average, where
saving mainly comes from registers similar to the area saving.
The static power is reduced by 6.5% on average. In registers,
leakage component decreases when latches are used, but short-
circuit current increases due to many brief glitches, which
explains seemingly no change in static power of registers.
Multiplexers also suffer from many brief glitches, since they

are typically fan-out of registers, which explains increasing
proportion of multiplexers in static power consumption. The
proportion of static power in total power consumption, how-
ever, is very small, about 6%. As a result, the total power
consumption is reduced by 16.0% on average.

Note that the power consumption due to glitches is included
in Fig. 13. Considering that latch-based designs typically
suffer from more glitches than flip-flop-based ones, Fig. 13
implies that the reduction in capacitance of latches is large
enough to outweigh the increase of power consumption due
to glitches.

VI. Design Flow Using HLS-l and Case Study

A. Design Flow

The overall design flow based on HLS-l is shown in
Fig. 14. A behavioral description written in VHDL is first
analyzed [40] and is then transformed into a DFG [41]. The
DFG will then be an input to HLS-l. The RTL description
of data-path and controller generated by HLS-l go through
a standard logic synthesis [37] to create an initial gate-level
netlist. Commercially available IPs [42] are used for FUs.

Care needs to be taken in designing a controller. A controller
is synthesized as a sequential circuit using SETFFs, because
DETFFs are not typically supported by commercial synthesis
tools [37]; SETFFs are thus manually replaced by DETFFs
afterward as shown in Fig. 14. During synthesis, however, the
timing constraint has to be properly set so that the controller
functions correctly after we substitute DETFFs for SETFFs.
This is done by arbitrarily setting the clock period of the
controller as the smaller of the transparent (W) or the non-
transparent phase (T − W) of data-path clock. Note that this
is only for synthesis purpose; the data-path and the controller
use the same clock in the implementation. Additional timing
analysis is needed after we have DETFFs in the controller,
to ensure that the controller satisfies the setup and hold-time
constraints both at the rising-edge and falling-edge of the
clock, since the corresponding timing parameters of SETFF
and DETFF do not exactly match as shown in Table III. If
timing analysis reports failure, an extra timing guardband is

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

668 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Fig. 14. Design flow using HLS-l.

Fig. 15. Block diagram of the H.264/AVC decoder; the IQ/IDCT module is
highlighted.

intentionally inserted into the controller, and re-synthesis is
performed as shown in Fig. 14.

B. Case Study: H.264/AVC

We tested the design flow shown in Fig. 14 on H.264/AVC
decoder, which implements one of the most popular in-
ternational video coding standards [43]. Fig. 15 shows its
block diagram, where we extracted a module named inverse
quantization and inverse discrete cosine transform (IQ/IDCT)
as a case study. The module is responsible for recovering
the residual data from encoded data. The VHDL description
of IQ/IDCT was transformed into a DFG consisting of 208
operations (64 multiplications, 64 additions, 64 subtractions,
and 16 assignments).

The resource constraint was empirically determined as two
fast multipliers, one slow multiplier, two fast adders, and one
slow adder, where adder can also perform subtraction; Di

of each type of FU was 6.0 ns, 11.8 ns, 4.4 ns, and 6.8 ns,
respectively. For the clock period of 4.4 ns, optimize-duty-
cycle reported empty intersections of Wi (L6 of Fig. 10), i.e.,
there is no such width of transparent phase W that minimizes
the execution delay of all the operations. Heuristic-duty-cycle
then returned two intervals of W : [1.6, 2.0] and [2.4, 2.8].
The scheduling was performed twice with the value from
each interval, and [1.6, 2.0] resulted in the smaller latency.
To assess the selected interval of W , we also performed
scheduling while we vary W from 1 ns to 4 ns; the result is
illustrated in Fig. 16. Even though the interval of [1.6, 2.0]
was found out by the heuristic algorithm, it indeed was the
optimal in this particular example. When the typical duty

Fig. 16. Latency as the number of c-steps versus W .

Fig. 17. Small amount of skew is assigned between the controller clock (�1)
and the data-path clock (�2) so that multiplexer select M1 arrives in time to
avoid its delay added into the data-path delay.

cycle of 0.5, which corresponds to W = 2.2 ns, is used, the
latency becomes 101 c-steps, which is four c-steps worse
than using the selected interval.

If we select 2.0 ns for W , for example, which is smaller than
T −W = 2.4 ns, that value has to be used as maximum DETFF
to DETFF delay when we synthesize the controller as we have
discussed in Section VI. The controller delay may be factored
in the data-path delay. As shown in Fig. 17, if the multiplexer
select M1 is not available when an input data of the same
multiplexer has arrived, the input data is effectively put on hold
until M1 arrives, thereby increasing the data-path delay. This
can be alleviated by applying a negative skew to �1 shown in
Fig. 17 (or equivalently by applying a positive skew to �2) so
that M1 arrives in time for the input data. The amount of skew
that can be reliably realized is limited [44], because within-die
variations affect extra buffers and wires inserted to implement
large skews in randomly different amount, thereby causing
uncertainties in skews. In our implementation, therefore, the
controller was synthesized with very tight timing constraint
(less than 2.0 ns), which resulted in 0.8 ns of maximum delay
of the controller.

VII. Conclusion

We have proposed a comprehensive solution to the new
problem of latch-based HLS. The main idea is the use of
p-step, which enables scheduling at both edges of the clock
to achieve a tighter schedule. It also helps in the register
allocation, since scheduling operations so that they complete in
a non-transparent p-step allows us to resolve read/write conflict
inherent in latch-based registers. The controller supporting
the proposed scheduling is implemented using DETFFs. In
addition, we showed that optimizing the clock duty cycle
can further reduce the latency. We tested HLS-l on several

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

PAIK et al.: HLS-L: A HIGH-LEVEL SYNTHESIS FRAMEWORK FOR LATCH-BASED ARCHITECTURES 669

benchmark designs implemented in 1.1-V, 45 nm CMOS tech-
nology. Compared with the conventional HLS, the latency was
reduced by 18.2% on average with 9.2% less area and 16.0%
less power consumption.

Latches are generally considered difficult to use for their
complicated timing behavior. They are made manageable in
HLS-l by combined efforts during the operation scheduling,
allocation, and control synthesis, specifically by handling
CRWOs, by introducing extra conflict edges to the register
conflict graph, and by using load enable per phase-step basis.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their constructive comments and suggestions, and I. Han of
KAIST, Daejeon, Korea, for the help with the mux experiment.

References

[1] S. Paik, I. Shin, and Y. Shin, “HLS-l: High-level synthesis of high
performance latch-based circuits,” in Proc. Design Autom. Test Europe
Conf. Exhibition, Apr. 2009, pp. 1112–1117.

[2] D. Chinnery and K. Keutzer, “Introduction and overview of the book,” in
Closing the Gap Between ASIC and Custom. Kluwer Academic, 2002,
pp. 4–28.

[3] V. Zhirnov, R. Cavin, J. Hutchby, and G. Bourianoff, “Limits to binary
logic switch scaling: A Gendanken model,” Proc. IEEE, vol. 91, no. 11,
pp. 1934–1939, Nov. 2003.

[4] P. Restle, T. McNamara, D. Webber, P. Camporese, K. Eng, K. Jenkins,
D. Allen, M. Rohn, M. Quaranta, D. Boerstler, C. Alpert, C. Carter,
R. Bailey, J. Petrovick, B. Krauter, and B. McCredie, “A clock distribu-
tion network for microprocessors,” IEEE J. Solid-State Circuits, vol. 36,
no. 5, pp. 792–799, May 2001.

[5] S. Held, B. Korte, J. Maßberg, M. Ringe, and J. Vygen, “Clock
scheduling and clocktree construction for high performance ASICs,” in
Proc. Int. Conf. Comput.-Aided Design, Nov. 2003, pp. 232–239.

[6] F. Klass, C. Amir, A. Das, K. Aingaran, C. Truong, R. Wang, A. Mehta,
R. Heald, and G. Yee, “A new family of semidynamic and dynamic flip-
flops with embedded logic for high-performance processors,” IEEE J.
Solid-State Circuits, vol. 34, no. 5, pp. 712–716, May 1999.

[7] M. Hamada, T. Terazawa, T. Higashi, S. Kitabayashi, S. Mita, Y. Watan-
abe, M. Ashino, H. Hara, and T. Kuroda, “Flip-flop selection technique
for power-delay trade-off,” in Proc. IEEE Int. Solid-State Circuits Conf.,
Feb. 1999, pp. 270–271.

[8] S. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. Sullivan, and
T. Grutkowski, “The implementation of the itanium 2 microprocessor,”
IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1448–1460, Nov. 2002.

[9] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa,
A. Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3-GHz fifth-
generation SPARC64 microprocessor,” IEEE J. Solid-State Circuits,
vol. 38, no. 11, pp. 1896–1905, Nov. 2003.

[10] C. Yeh, E. Hsu, K. Cheng, J. Wang, and N. Chang, “An 830 mw, 586
kbps 1024-bit RSA chip design,” in Proc. Design Autom. Test Eur. Conf.
Exhibition, Mar. 2006, pp. 24–29.

[11] X. Liang, D. Brooks, and G. Wei, “A process-variation-tolerant floating-
point unit with voltage interpolation and variable latency,” in Proc. IEEE
Int. Solid-State Circuits Conf., Feb. 2008, pp. 404–406.

[12] D. G. Chinnery, B. Nikolic, and K. Keutzer, “Achieving 550 MHz
in an ASIC methodology,” in Proc. Design Autom. Conf., Jun. 2001,
pp. 420–425.

[13] V. S. Sathe, J. C. Kao, and M. C. Papaefthymiou, “Resonant-clock latch-
based design,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 864–873,
Apr. 2008.

[14] S. Narayan and D. Gajski, “System clock estimation based on clock
slack minimization,” in Proc. Eur. Design Autom. Conf., Sep. 1992,
pp. 66–71.

[15] A. Naseer, M. Balakrishnan, and A. Kumar, “Optimal clock period for
synthesized data paths,” in Proc. Int. Conf. Very Large Scale Integr.
Design, Jan. 1997, pp. 134–139.

[16] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the
scheduling problem in high level synthesis,” IEEE Trans. Comput.-Aided
Design, vol. 10, no. 4, pp. 464–475, Apr. 1991.

[17] M. R. Corazao, M. A. Khalaf, L. M. Guerra, M. Potkonjak, and J.
M. Rabaey, “Performance optimization using template mapping for
datapath-intensive high-level synthesis,” IEEE Trans. Comput.-Aided
Design, vol. 15, no. 8, pp. 877–888, Aug. 1996.

[18] S. Park and K. Choi, “Performance-driven high-level synthesis with bit-
level chaining and clock selection,” IEEE Trans. Comput.-Aided Design,
vol. 20, no. 2, pp. 199–212, Feb. 2001.

[19] T. Wu and Y. Lin, “Storage optimization by replacing some flip-flops
with latches,” in Proc. Eur. Design Autom. Conf., Sep. 1996, pp. 296–
301.

[20] W. Yang, I. Park, and C. Kyung, “Low-power high-level synthesis using
latches,” in Proc. Asia South Pacific Design Autom. Conf., Jan. 2001,
pp. 462–465.

[21] Y. Chen and Y. Xie, “Tolerating process variations in high-level synthesis
using transparent latches,” in Proc. Asia South Pacific Design Autom.
Conf., Jan. 2009, pp. 73–78.

[22] M. McFarland, A. Parker, and R. Camposano, “The high-level synthesis
of digital systems,” Proc. IEEE, vol. 78, no. 2, pp. 301–318, Feb. 1990.

[23] G. Gupta, M. Gupta, and P. R. Panda, “Rapid estimation of control delay
from high-level specifications,” in Proc. Design Autom. Conf., Jul. 2006,
pp. 455–458.

[24] G. De Micheli, “Scheduling algorithms,” in Synthesis and Optimization
of Digital Circuits. McGraw-Hill, 1994, pp. 187–193.

[25] G. De Micheli, “Resource sharing and binding,” in Synthesis and
Optimization of Digital Circuits. McGraw-Hill, 1994, pp. 230–245.

[26] T. C. Hu, “Parallel sequencing and assembly line problems,” Oper. Res.,
vol. 9, no. 6, pp. 841–848, Dec. 1961.

[27] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the
behavioral synthesis of ASICs,” IEEE Trans. Comput.-Aided Design,
vol. 8, no. 6, pp. 661–679, Jun. 1989.

[28] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel
assignment within large apertures,” in Proc. Design Autom. Workshop,
Jun. 1971, pp. 155–169.

[29] F. Kurdahi and A. Parker, “REAL: A program for register allocation,”
in Proc. Design Autom. Conf., Jun. 1987, pp. 210–215.

[30] D. Brelaz, “New methods to color the vertices of a graph,” Commun.
ACM, vol. 22, no. 4, pp. 251–256, Apr. 1979.

[31] High level synthesis benchmark [Online]. Available:
http://bears.ece.ucsb.edu/cad

[32] T. Kim and X. Liu, “Compatibility path-based binding algorithm for
interconnect reduction in high level synthesis,” in Proc. Int. Conf.
Comput.-Aided Design, Nov. 2007, pp. 435–441.

[33] D. Chen and J. Cong, “Register binding and port assignment for
multiplexer optimization,” in Proc. Asia South Pacific Design Autom.
Conf., Jan. 2004, pp. 68–73.

[34] V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic,
“State-of-the-art clocked storage elements in CMOS technology,” in
Digital System Clocking: High-Performance and Low-Power Aspects.
Wiley, 2003, pp. 180–186.

[35] R. Llopis and M. Sachdev, “Low power, testable dual edge triggered
flip-flops,” in Proc. Int. Symp. Low Power Electron. Design, Aug. 1996,
pp. 341–345.

[36] Y.-J. Wang, S.-K. Kao, and S.-I. Liu, “All-digital delay-locked
loop/pulsewidth-control loop with adjustable duty cycles,” IEEE J. Solid-
State Circuits, vol. 41, no. 6, pp. 1262–1274, Jun. 2006.

[37] Design Compiler User Guide, Synopsys, Inc., Mountain View, CA, Mar.
2007.

[38] Prime Time User Guide, Synopsys, Inc., Mountain View, CA, Dec. 2006.
[39] NanoSim User Guide, Synopsys, Inc., Mountain View, CA, Dec. 2007.
[40] T. Ahn, K. Kim, S. Park, and K. Choi, “Incremental analysis and

elaboration of VHDL description,” in Proc. Asia Pacific Conf. Hardw.
Description Languages, Jan. 1996, pp. 128–131.

[41] J. Jeon, Y. Ahn, and K. Choi, “CDFG toolkit user’s guide,” Seoul Nat.
Univ., Tech. Rep. SNU-EE-TR-2002-8, Aug. 2002.

[42] DesignWare IP Family Reference Guide, Synopsys, Inc., Mountain View,
CA, Dec. 2007.

[43] ITU-T Recommendation H.264, ITU-T, Mar. 2009 [Online]. Available:
http://www.itu.int/rec/T-REC-H.264

[44] K. M. Carrig, “Chip clocking effect on performance for IBMs SA-27E
ASIC technology,” IBM Micronews, vol. 6, no. 3, pp. 12–16, 2000.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Seungwhun Paik (S’07) received the B.S. degree
in electrical engineering from the Korea Advanced
Institute of Science and Technology (KAIST), Dae-
jeon, in 2006. He is currently working toward the
Ph.D. degree from the Department of Electrical
Engineering, KAIST.

His current research interests include computer-
aided design for high-performance designs, low
power designs, high-level synthesis, and structured
application-specific integrated circuit.

Insup Shin (S’09) received the B.S. and M.S.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, in 2007 and 2009, respectively.
He is currently working toward the Ph.D. degree
from the Department of Electrical Engineering,
KAIST.

His current research interests include very large
scale integration design methodology and computer-
aided design for low-power and high-performance
integrated circuits.

Taewhan Kim (SM’08) received the B.S. degree in
computer science and statistics and the M.S. degree
in computer science from Seoul National University
(SNU), Seoul, Korea in 1985 and 1987, respectively,
and he received the Ph.D. degree in the field of
computer science from the University of Illinois at
Urbana-Champaign, Champaign, in 1993.

From 1993 to 1998, he was a Software Engineer
with Lattice Semiconductor Corporation, Hillsboro,
OR, and Synopsys, Inc., Mountain View, CA, where
he was involved in logic and high-level synthesis.

From 1998 to 2003, he was with the Department of Electrical Engineering
and Computer Science, Korea Advanced Institute of Science and Technology,
Daejeon. Currently, he is a Professor with the School of Electrical Engineering
and Computer Science, SNU. His current research interests include computer-
aided design of integrated circuits and combinatorial optimizations.

Youngsoo Shin (SM’05) received the B.S. and
M.S. degrees in electronics engineering from Seoul
National University, Seoul, Korea, and the Ph.D. de-
gree in electronics engineering from Seoul National
University, in 2000.

From 2000 to 2001, he was with the Univer-
sity of Tokyo, Tokyo, Japan, as a Research Asso-
ciate. From 2001 to 2004, he was with the IBM
T. J. Watson Research Center, Yorktown Heights,
NY, as a Research Staff Member. He joined the
Department of Electrical Engineering, Korea Ad-

vanced Institute of Science and Technology, Daejeon, in 2004, where he
is currently an Associate Professor. His current research interests include
computer-aided design with emphasis on low-power design and design tools,
high-level synthesis, sequential synthesis, and structured application-specific
integrated circuit.

Dr. Shin received the Best Paper Award at the International Symposium
on Quality Electronic Design, in 2005, and was nominated for the Best
Paper Award at the same conference, in 2007. He has been a Member of the
Technical Program Committee and Organizing Committee of several technical
conferences, including the Design Automation Conference, the International
Conference on Computer-Aided Design, the International Symposium on Low
Power Electronics and Design, the Asia and South Pacific Design Automation
Conference, the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, the IEEE Symposium on Very Large Scale
Integration, and the International Symposium on Circuits and Systems.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on April 22,2010 at 12:17:30 UTC from IEEE Xplore. Restrictions apply.

