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Abstract
High integration in integrated circuits often leads to the prob-

lem of running out of pins. Narrow data buses can be used to
alleviate this problem at the cost of performance degradation due
to wait cycles. In this paper, we address bus coding methods for
low power core-based systems incorporating narrow buses. Al-
though the conventional Bus-Invert code performs well for com-
pletely random patterns, we show that transition signaling com-
bined with Bus-Invert, which we call BITS coding, can achieve
much more power saving for data patterns of typical DSP appli-
cations. The application of BITS coding to a real circuit design is
limited by the overhead of the encoder and decoder circuits and
the extra bus line introduced. We propose an approximate ver-
sion of BITS coding, which do not require the extra bus line while
retaining the advantage of BITS coding.

1 Introduction
Recently, a core-based design has become prevalent in digital

systems design to cope with ever increasing time-to-market pres-
sure. A system designed with cores often contains a lot of com-
ponents, such as core processors, DSPs, and ASICs. As an exam-
ple of QUALCOMM MSM3000, which is widely used in wire-
less systems, ARM7TDMI microprocessor core, a DSP, a CDMA
and a DFM processor, and several peripheral interfaces are inte-
grated into the same chip. The number of pins, which directly
contributes to cost of a chip, is one of problems for such a high
integration because it easily increases with the increasing number
of components integrated into the same chip [1]. Communication
with off-chip devices via narrow data buses is one of solutions to
reduce the number of pins at the cost of reduced performance due
to increased wait states. For the example of ARM7TDMI, which
is a 32-bit microprocessor core, three kinds of data transfer sizes
(Byte, Halfword, and Word) are provided to allow the core to be
interfaced to 8, 16, or 32-bit wide memory systems.

The power consumption is also one of problems for such a
high integration, especially for portable systems such as cellular
phones and PDAs. It is a well known fact that a lot of power
is consumed during off-chip bus driving due to the large off-chip
driver, the pad capacitance, and the large off-chip capacitance [2].
Specifically, the capacitive load at the input/output of a chip is
usually much larger (around three orders of magnitude) than that
of the internal nodes. As a consequence, a considerable amount
of power can be saved by a bus encoding, which reduces power
consumption of a bus through encoding information transferred
on the bus in such a way that the encoded version has less transi-
tions compared to the original one.

In this paper, we study bus coding schemes for low power
core-based systems incorporating narrow buses1. While various

1In this paper, we define anarrow busas a bus transferring patterns whose width is larger
(typically multiples of 2) than that of the bus, thus transferring each pattern in multiple cycles.

bus coding techniques have been proposed to reduce the peak or
the average power consumption during off-chip communication
[3], [4], [5], [6], [7], [8], [9], none of them has addressed explic-
itly the problem of coding patterns on a narrow bus. Compared to
patterns transferred on the bus of the same width, those on the nar-
row bus exhibit a different property in that correlations between
consecutive patterns, if they exist, are entirely lost. We show that
transition signaling combined with Bus-Invert (BI) coding [5],
which we callBITScoding in this paper, is particularly suitable
for this situation.

The power reduction with bus coding is obtained at the cost
of power, delay, and area overhead of encoding and decoding cir-
cuits. For BITS coding, the overhead mainly comes from a ma-
jority voter, which is a circuit for decision making. In order to
reduce the overhead while retaining the advantage of BITS cod-
ing, we propose an approximate version of BITS coding, called
ABITScoding. More importantly, ABITS coding does not use any
spatial and temporal redundancy thus provides an efficient coding
method in a broad-level circuit design. To verify the advantage of
ABITS coding in circuit design, we implement coding logics for
BI, BITS, and ABITS codings, and compare power, delay, and
area overhead.

The rest of the paper is organized as follows. In the next sec-
tion, we review the related work which focus on the reduction of
bus transitions by bus coding. In section 3, we explain BITS and
ABITS codings and their advantages, and present experimental
results for some examples of patterns. In section 4, we present
the implementation results of encoding and decoding circuits for
BI, BITS, and ABITS codings and compare their power, area, and
delay overhead. In section 5, we draw conclusions.

2 Related Work
The BI code [10], [5] is appropriate for uncorrelated data pat-

terns, i.e. for patterns randomly distributed both in time and in
space. In the BI coding, if the Hamming distance (the number
of bits resulting in a transition) between the new pattern to be
transferred and the old one currently on the bus (also counting
the transition on the extra bus line, calledinvert) is larger than
half the bus width, then the new pattern is transferred with each
bit inverted. Theinvert line is used to inform the receiver side
whether the pattern is inverted or not. However, it is not effective
for correlated data patterns and for buses of larger widths.

For instruction address patterns, where consecutive patterns
are often sequential, the Gray code is efficient [3]. In the T0 code
[7], the bus transitions are further reduced by freezing the address
lines when consecutive patterns are found to be sequential. An
extra bus line is employed to inform the receiver side whether or
not the current pattern is sequential.

In special-purpose applications, where the information about
the sequence of patterns is available a priori, the characteristics
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of patterns can be exploited to efficiently reduce bus transitions.
The Beach Solution [8] makes clusters of bus lines based on sta-
tistical information of address patterns and then generates an en-
coding function for each cluster such that the encoded version
of each cluster results in less transitions. For data address pat-
terns which are less sequential than instruction address patterns
and less random than data patterns, the Partial Bus-Invert (PBI)
code [9] performs better. It applies BI coding to a pre-selected
sub-group of bus lines thereby avoiding unnecessary inversion of
relatively inactive and/or uncorrelated bus lines.

While the conventional level signaling encodes logic1 as high
level voltage and logic0 as low level voltage (or vice versa), the
transition signaling [4] encodes logic1 as having a transition and
logic 0 as lack of transition (or vice versa). For example, if the
pattern currently on the bus is0110 and the one to be transferred
is 0101, it is encoded into0011. It is efficient with respect to
power consumption when the probability of0 (or 1) is very high
because the number of transitions becomes that of1 (or 0) after
transition encoding. We can increase the probability of0 (or 1)
by applying BI encoding2.

3 Coding a Narrow Bus

3.1 BI and BITS codings

If data patterns are randomly distributed in time and mutually
independent in space, a transfer via narrow bus, that is transfer-
ring each pattern in multiple cycles, does not destroy the origi-
nal randomness of patterns. BI code still performs well in this
case. Actually, its performance increases because BI code per-
forms better for small bus width [5].

When data patterns do not follow this ideal property, as is of-
ten the case with data patterns in signal and image processing
applications, BI code is not the best choice. Consider an exam-
ple of decimal representation in Fig. 1(a), which is drawn from
samples of human voice. Fig. 1(b) shows a typical 16-bit two’s
complement fixed point representation with 8-bit integral part and
fractional part3. As shown in the figure, the least significant (LS)
bits tend to be random whereas the most significant (MS) bits tend
to have highspatialandtemporalcorrelations due to sign exten-
sion, though the boundary is not clearly defined. This behavior
of patterns are commonly observed in DSP applications such as
signal and image processing algorithms and even used as a model
for power estimation [11]. However, the temporal correlations at
the MS bits are lost when the original patterns are transferred on
a narrow bus, say 8-bit wide bus in this example, since the MS
bits having spatial correlations and LS bits having randomness
appears on bus lines alternately, as illustrated in Fig. 1(c), where
Xi denotes a pattern at timei.

If we apply BI encoding for the patterns in Fig. 1(c), the num-
ber of transitions are reduced from 37 to 30 as illustrated in Fig.
2(a), where the rightmost bit indicates the value on theinvert line.
Further reduction can be obtained if we apply BITS encoding as
illustrated in Fig. 2(b). This is because it is highly probable that

2In normal BI encoding (BI encoding with level signaling), the decision for inverting depends
on the number of transitions between the pattern to be transferred (Xi ) and the one on the bus. In
BITS encoding (BI encoding with transition signaling), the decision is made based on the number
of 1’s in Xi .

3In this example, 8-bit is the minimum width of the integral part required to avoid overflow.

5.683594 0000010110101111 X0: 00000101 X5: 01100000

10.578125 0000101010010100 X1: 10101111 X6: 00000001

-5.625000 1111101001100000 X2: 00001010 X7: 00000100

1.019531 0000000100000100 X3: 10010100 X8: 00000011

3.484375 0000001101111100 X4: 11111010 X9: 01111100

(a) (b) (c)

Fig. 1. An example of patterns from human voice. (a) Decimal representation.
(b) 16-bit two’s complement fixed point representation with 8-bit integral part (the
leftmost bit being MSB and the rightmost bit being LSB). (c) The same patterns on
8-bit wide bus with 37 transitions.

00000101 0 00000101 0 00000101

10101111 0 01010101 1 11010101

00001010 0 01011111 0 01011111

01101011 1 11001011 0 10110100

11111010 0 11001110 1 10110001

01100000 0 10101110 0 01010001

00000001 0 10101111 0 01010000

00000100 0 10101011 0 01010100

00000011 0 10101000 0 01010111

10000011 1 00101011 1 00101011

(a) (b) (c)

Fig. 2. (a) BI-encoded patterns with 30 transitions. (b) BITS-encoded patterns with
23 transitions. (c) ABITS-encoded patterns with 26 transitions.

the occurrence of1 or 0 dominates at each pattern due to sign ex-
tension (see Fig. 1(c)), and BITS encodes0 as having a transition
in the former case and1 as having a transition in the latter case.
That is, in BITS encoding, if the number of1’s in Xi is larger than
half the bus width, each bit ofXi is inverted (with theinvert line
set to1) and then transition-encoded. Otherwise, each bit ofXi
is transition-encoded as is. More precisely, for a pattern at timei
(Xi), its BI-encoded version is given by

Yi jI =

�
Xi j0; if w(Xi)� n=2
Xi j1; otherwise

(1)

wherej denotes a concatenate operation,I denotes the value at the
invert line, w(Xi) denotes the number of1’s in Xi , andn denotes
the bus width. Then, the BITS-encoded version ofXi is given by

Zi jI = TS(Yi ;Zi�1)jI ; (2)

whereTS(x;y) denotes a transition encoding ofx with respect to
y4.

The decoding process can be carried out by

Xi =

�
Yi ; if I = 0
Yi ; otherwise

(3)

whereYi =TS�1(Zi ;Zi�1). Note that bothTS(x;y) and its inverse
TS�1(x;y) can be implemented by XORingx andy.

3.2 ABITS coding

Although substantial power saving can be obtained with BITS
coding, its overhead can not be neglected as will be illustrated
with the implementation of encoder and decoder circuits in the
next section. Furthermore, its application to real circuit design
is limited by the extra bus line, which calls for change in pinout
and interface specification of the original chip. Because the main
overhead comes from a majority voter, that decides whether to

4TSis commutative, i.e.TS(x;y) = TS(y;x).
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encode1 or 0 as having a transition (equation (1)), we eliminate
the voter but resort to aguess. In the proposed ABITS encoding,
the guess relies on the MSB of eachXi , denoted byxn�1

i , meaning
that MSB takes over the function of invert line thus eliminating
the need for the extra bus line. More precisely, in ABITS encod-
ing,Yi is given by

Yi =

�
xn�1

i jXi(n�1); if xn�1
i = 0

xn�1
i jXi(n�1); otherwise

(4)

whereXi(n�1) denotes lowern�1 bits ofXi . Then, the ABITS-
encoded version ofXi is obtained by

Zi = yn�1
i jTS(Yi(n�1);Zi�1(n�1)): (5)

The application of ABITS encoding for our example is illus-
trated in Fig. 2(c). The main observation behind ABITS encod-
ing is that it is highly probable that the guess is correct when
xn�1

i corresponds to the actual sign of the pattern (X0;X2;X4; : : :
in Fig. 1(c)). Furthermore, even for the remaining patterns
(X1;X3;X5; : : : in Fig. 1(c)), the probability of incorrect guess
is kept low. Specifically, if ann-bit wide pattern is completely
random, the probability of incorrect guess is given by

2(Cn=2+1
n�1 +Cn=2+2

n�1 � � �Cn�1
n�1)

2n =
1
2
�21�nCn=2

n�1: (6)

As a numerical example, the probability is 0.125 for a 4-bit pat-
tern and 0.227 for an 8-bit pattern. The probability is 0 for a
2-bit pattern, meaning that ABITS encoding becomes equivalent
to BITS encoding. Although ABITS encoding obtains less transi-
tion reduction due to incorrect guess, the overall power consump-
tion (including the power consumed by the encoder itself) is fairly
comparable to that of BITS encoding because the ABITS encoder
consumes less power than BITS encoder. More importantly, the
spatial redundancy is not used in ABITS coding, and as will be
presented in the next section, both the delays of the encoder and
the decoder for ABITS coding are below 1ns, thus lends itself to
adaptation as a coding method in a broad range of circuit design.

3.3 Experimental Results

To evaluate the efficiency of the ABITS encoding in bus tran-
sition reduction, we perform two experiments. The first exper-
iment is with a noise canceller, an example from Hyper [12],
which receives two signals (noisy speech and reference noise sig-
nals) as inputs and produces a noise-cancelled speech signal as
an output. We encode each signal as 16-bit two’s complement
fixed point with 8-bit integral part. We assume 8-bit wide bus for
off-chip communication thus 2 cycles for transferring each pat-
tern. The results are shown in Table 1 for two patterns, named
noisy speech andspeech output. The result of ABITS en-
coding is compared to those of BI and BITS encodings. Note that
BITS encoding is a lower bound to ABITS encoding with respect
to the number of transitions.

The second experiment is with data patterns extracted from
an audio decoder, which is designed with VHDL and supports
MPEG-2 audio and AC-3 standard with programmability [13].
Through VHDL simulation, we extract 40-bit wide data patterns
(20-bits of real and imaginary parts, respectively) handled by an
FFT processor, which computes 128-point complex FFT. We as-
sume one 10-bit wide bus for off-chip communication for each of

Table 3. Comparison of area, delay, and power of encoders and decoders

Encoder Decoder

BI BITS ABITS BI BITS ABITS

Area (µm2) 19076 18626 4659 2662 11392 9968

Delay (ns) 3.29 3.87 0.38 0.15 0.38 0.38

Power (µW) 2309 2409 411 120 2102 1618

real and imaginary parts. The results are shown in Table 2 for two
patterns, namedfft rdata andfft idata.

The results show that BITS encoding obtains substantial re-
duction compared to unencoded patterns and BI-encoded pat-
terns. The difference between BITS and ABITS encodings is not
that significant, though the latter resort to fairly simple prediction
mechanism.

4 Implementation of Coding Logic

Bus coding inherently introduces area, delay, and power over-
head due to encoding and decoding circuits. Thus, the overhead
should be kept as low as possible in order to be used in broad
class of circuit design. In this section, we present the implemen-
tation results of encoding and decoding circuits for BI, BITS, and
ABITS codings for 8-bit wide bus and compare their power, area,
and delay overhead. The coding circuits are designed with VHDL
followed by functional simulation and synthesized using Synop-
sys Design Compiler. Layouts are obtained using Cadence Sili-
con Ensemble. The circuits are mapped onto a 0.35µm, 3.3 V
gate library developed for the TSMC 0.35µm CMOS process.
We assume a 100 MHz clock frequency.

The area, delay, and power of the encoder and decoder for
each coding method are summarized in Table 3. The power is
simulated using IRSIM with the patternnoisy speech in Table
1 used as input vectors. The delay is measured using HSPICE.
Although the delay of BITS encoding is much less than the clock
period (10nsin the 100 MHz system), it may limit the application
of BITS coding to systems which are already delay-optimized,
which are clocked at very high speed, and so on. ABITS takes
less than 1ns for each of its encoding and decoding.

To evaluate the overall power consumed during off-chip driv-
ing, which includes the power consumed by encoder, latches, and
output drivers5, each output driver is loaded withoutput capaci-
tance, which is the sum of pad capacitance and off-chip capaci-
tance. Then the entire circuit of each coding method is simulated
with IRSIM applying the same patterns in Table 1 as input vec-
tors. The results are summarized in Table 4. We vary the output
capacitance6 and compare the overall power consumption. The
third column corresponds to the power consumption of circuits
containing only latches and output drivers. Compared to Table 1,
the difference between BITS and ABITS is very small due to less
power consumption of the ABITS encoder.

5The latches and output drivers at the encoder side and the input drivers at the decoder side
(except for those involved in theinvert line) are also present in the unencoded case.

6The power consumed by off-chip driving consists of the power used to drive off-chip capaci-
tance, bonding wires, and the pad capacitance and the power consumed by the driver [2]. In the
experiment, we vary the output capacitance from 10 pF, which is typical for multichip module
technology, to 30 pF, which is for advanced package and advanced PCB.
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Table 1. Comparison of the total number of bus transitions

Pattern # patterns Unencoded BI encoding BITS encoding ABITS encoding
Names # trans. # trans. % red. # trans. % red. # trans. % red.

noisy speech 3276 13133 10686 18.6 8632 34.3 9650 26.5
speech output 3276 12375 10423 15.8 6518 47.3 7348 40.6

Table 2. Comparison of the total number of bus transitions

Pattern # patterns Unencoded BI encoding BITS encoding ABITS encoding
Names # trans. # trans. % red. # trans. % red. # trans. % red.

fft rdata 1566 7767 6375 17.9 3690 52.5 4337 44.2
fft idata 1566 7714 6351 17.7 3684 52.2 4160 46.1

Table 4. Comparison of the overall power consumption during off-chip driving

Pattern Output Unencoded BI encoding BITS encoding ABITS encoding
Names cap. (pF) power (mW) P (mW) Red. (%) P (mW) Red. (%) P (mW) Red. (%)

10 29.5 29.1 1.4 23.0 22.0 23.1 21.7
15 40.4 38.0 5.9 30.2 25.2 31.1 23.0

noisy speech 20 51.4 46.9 8.8 37.3 27.4 39.1 23.9
25 62.4 55.8 10.6 44.5 28.7 47.2 24.4
30 73.3 64.7 11.7 51.7 29.5 55.2 24.7

10 27.9 28.2 -1.1 18.1 35.1 18.0 35.5
15 38.2 36.9 3.4 23.5 38.5 24.1 36.9

speech output 20 48.5 45.6 6.0 28.9 40.4 30.2 37.7
25 58.9 54.3 7.8 34.3 41.8 36.3 38.4
30 69.1 63.0 8.8 39.7 42.5 42.4 38.6

5 Conclusion
In this paper, we address bus coding methods targeting highly

integrated low power systems incorporating narrow buses. When
the original data patterns are completely random, the conven-
tional Bus-Invert (BI) coding still performs well for narrow buses.
Regarding data patterns found in typical DSP applications, we
show that transition signaling combined with Bus-Invert (BITS)
coding can achieve significant power saving for narrow buses.
Since the application of BITS coding in circuit design is limited
by the overhead of the encoder and decoder circuits and the ex-
tra bus line, we propose ABITS coding, which is an approximate
version of BITS coding. Although the ABITS coding employs a
much simpler encoder circuit, overall power saving is shown to
be comparable with that of BITS.
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