
Architecting Voltage Islands in Core-based
System-on-a-Chip Designs

Jingcao Huz , Youngsoo Shinx , Nagu Dhanwaday , and Radu Marculescuz
zDepartment of ECE, Carnegie Mellon University, Pittsburgh, PA 15213

xIBM T. J. Watson Research Center, Yorktown Heights, NY 10598
yIBM EDA Laboratory, Hopewell Junction, NY 12533

ABSTRACT
Voltage islands enable core-level power optimization for System-
on-Chip (SoC) designs by utilizing a unique supply voltage for each
core. Architecting voltage islands involves island partition creation,
voltage level assignment and floorplanning. The task of island par-
tition creation and level assignment have to be done simultaneously
in a floorplanning context due to the physical constraints involved
in the design process. This leads to a floorplanning problem for-
mulation that is very different from the traditional floorplanning
for ASIC-style design.

In this paper, we define the problem of architecting voltage is-
lands in core-based designs and present a new algorithm for si-
multaneous voltage island partitioning, voltage level assignment
and physical-level floorplanning. Application of the proposed algo-
rithm to a few benchmark and industrial examples is demonstrated
using a prototype tool. Results show power savings of 14%–28%,
depending on the constraints imposed on the number of voltage is-
lands and other physical-level parameters.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineering—com-
puter aided design (CAD)

General Terms
Algorithms, Design

Keywords
System-on-a-Chip, voltage island, floorplanning, low-power, mul-
tiple VDD

1. INTRODUCTION
As the scale of process technologies steadily shrinks, more and

more devices can be implemented on a single chip. This enables
various applications to be realized as System-on-a-Chip (SoC) de-
signs, especially by using pre-designed cores. Typical SoCs con-
sist of programmable processors and peripheral cores that are con-
nected to standard bus-based architectures. The SoC design process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04,August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

starts with architectural design in conjunction with physical plan-
ning and performance/power analysis, along with estimation of die
size and package selection [1]. This step is followed by mapping
the design to a platform that is composed of a commonly used set of
cores and their interconnections, or by changing legacy designs to
comply with new design requirements. The final RTL description
with timing assertions is submitted to the traditional chip-level de-
sign process consisting of logic synthesis, floorplanning and phys-
ical design, and physical synthesis-based timing closure. While
meeting the timing requirements of modern SoC designs is diffi-
cult, power consumption has become another critical design metric
due to increasing power density and wide use of portable systems.
There are many techniques to reduce power consumption at each
level of the design abstraction [2].

The core-base design using voltage islands [3] is a new technique
which helps reducing both switching and standby components of
power dissipation. Simply speaking, a voltage island is a group of
on-chip cores powered by the same voltage source, independently
from the chip-level voltage supply. The use of voltage islands per-
mits operating different portions of the design at different voltage
levels in order to optimize the overall chip power consumption. In
the SoC context, the voltage island enables core-level power opti-
mization by utilizing a power supply that is unique from the rest of
the design.

Introducing voltage islands makes the chip design process even
more complicated with respect to static timing, power routing, floor-
planning, etc. In particular, the complexity grows significantly with
the number of allowed islands. Thus, a designer using voltage is-
lands needs to group together the cores powered by the same volt-
age source and ensure that the created grouping does not violate
other design metrics such as timing and wiring congestion. The
voltage islands need to be placed close to the power pins in order
to minimize the power routing complexity and the IR drop. Since
each island requires its own power grid and level converters to com-
municate with different other islands, the overhead with respect to
area and delay is unavoidable. We may have additional area over-
head due to potential dead spaces, if two or more cores are put into
the same island but they cannot be packed perfectly. These addi-
tional requirements lend themselves into an interesting and unique
floorplanning problem, which is the main objective of this paper.

Figure 1 shows an example of creating voltage islands in SoCs.
Each core is associated with a list of voltages that can be used to
operate it. For instance, the core c2 can operate at 1.0, 1.1 or 1.2V.
All the cores have fixed shapes and, for this particular example, the
cores c1, c2 and c3 are pre-placed to fixed positions. The chip-level
voltage is assumed to be 1.2V meaning that we don’t need to create
a distinct voltage island for those cores that operate at 1.2V. If we
want to minimize the power consumption, one obvious way is to

180

6.4

c1

c2

c3
c4

c5
c6

c1: 1.1V, 1.2V
c2: 1.0V, 1.1V, 1.2V
c3: 1.1V, 1.2V
c4: 1.1V, 1.2V
c5: 1.2V
c6: 1.0V, 1.1V, 1.2V

Figure 1: Example SoC for voltage island creation.

operate each core at its lowest voltage. This means that we need at
least 3 voltage islands: one for c2 and c6, one for c1 and c4, and
one for c3. (Of course, other choices do exist. For instance, an-
other choice could be: one island for c2 and c6, one for c1, and one
for c3 and c4.) Note that we cannot create a single voltage island
with c1, c3, and c4 because in such a case the bounding rectangle1

would have to cover the entire chip image. Still, this is not a per-
fect solution: an island with c2 and c6 may not be allowed because
the enclosing rectangle violates the constraint of proximity to the
power pins in case they are located on the periphery of the image.
A voltage island bringing c1 and c4 (or c3 and c4) would have a
dead space inside of it. We may try to use more islands to alleviate
some of these problems, but this is not easily possible because the
number of islands that can be created is usually constrained from
other design considerations. This example clearly shows a new
constrained floorplanning problemwith the objective very differ-
ent from the traditional floorplanning in ASIC-style designs. As
such, we address, for the first time to our knowledge, the floor-
planning problem for voltage island creation with the objective of
minimizing power consumption and area overhead.

The remainder of the paper is organized as follows. In the next
section, we formulate the floorplanning problem for voltage island
creation. In Section 3, we outline our algorithm and study some
potential extensions. In Section 4, we present experimental results
for several examples, and in Section 5 we conclude by summarizing
our main contribution.

2. PROBLEM DESCRIPTION
We assume given a SoC consisting of a set of cores C. The chip

image where the cores are to be floorplanned is also given implying
that we do a fixed frame floorplanning as opposed to traditional
min-area floorplanning. The choice depends on the overall chip
design process [4], meaning that, in this paper, the floorplanning
process is assumed to happen after the die size and package have
been chosen.

For each core ci 2C, the area is given as a product wihi , where
wi and hi are the width and the height of the core, respectively.
The shape is fixed for the hard cores, yet rotation and mirroring
are allowed. For soft cores, the acceptable aspect ratios are given
as constraints. Each core is also associated with a power table,
which specifies the legal voltage levels and the corresponding av-
erage power consumption values.

The legal voltage levels of a core can be characterized by core
designers. For example, the designers may keep changing the sup-
ply voltage of a specific core, as long as the core-level timing as-
sertions are still satisfied; this gives a list or range of voltages that

1We assume a rectangular outline for simplicity, though rectilinear
outline may also be allowed.

can be supplied. Once the legal voltages are selected, the power
consumption corresponding to each voltage can be characterized
through simulation or estimation [5].

Let πi denote any voltage island, which consists of a set of cores,
i.e. πi �C. Thus, C= ∑i πi [∑i ci , where ∑i ci denotes those cores
not assigned to any islands that are therefore operated by chip-level
power supply. A voltage island has a unique voltage, denoted as
v(πi), which is selected from the list of supply voltage levels, de-
noted as V(πi), which πi can work at; thus v(πi) 2V(πi). V(πi) is
equal to the intersection of the legal voltage levels of all πi’s com-
posing cores. As an example, if we create π1 with c1 and c6 in Fig-
ure 1, V(π1) = f1:1V;1:2Vg. A voltage island πi is said to be com-
patiblewith another voltage island πj if and only if v(πi) = v(πj),
i.e. they have the same voltage level; it is incompatible, otherwise.

We assume an initial floorplan, which may be given up front or
may be the result of floorplanning with different design objectives
such as performance. In the initial floorplan, some of cores may be
pre-fixed or have assigned a certain area where they can be moved.
This can be modeled by associating to each core a move bound
defined by (lxi ; rxi ;byi ;uyi), where (lxi ;byi) and (rxi ;uyi) denote
bottom-left and upper-right hand corner coordinates, respectively.
The move bound may overlap with a core when it has a fixed loca-
tion. Also, the move bound may become the entire chip image in
case a core is not assigned any move bounds.

Our problem of voltage island planningconsists of:

� partitioning C into a set of voltage islands and cores,

� area-planning for each voltage island,

� floorplanning of islands and cores.

Note that area-planning of each island involves another floorplan-
ning step (namely, the voltage island-level floorplanning). Our ob-
jective is to simultaneously minimize power consumption and area
overhead, while keeping the number of voltage islands less than or
equal to a designer-specified threshold.

3. VOLTAGE ISLAND PLANNING
ALGORITHM

3.1 Basic Data Structure
A Voltage Island Compatibility Graph(VICG) G = G(Π;A) is

a complete undirectedgraph which captures the current voltage is-
land partitioning solution in an abstract way. Each vertex πi 2 Π
represents a voltage island and each arc ai; j 2 A characterizes the
“attraction” between the islands πi and πj . Each arc has a weight
w(ai; j), which is calculated using the following equation:

w(ai; j) =

�
1+α�wiresi; j ; if v(πi) = v(πj)
0; otherwise

(1)

where α is a constant and wiresi; j denotes the number of wires
between πi and πj . The weight w(ai; j) is used to guide the floor-
planning by describing the potential savings when two islands are
placed adjacently which, in turn, gives the possibility of further
island merging. Intuitively, if the voltage islands πi and πj are
not compatible, then they are independent since they can not be
merged together even if they are placed adjacently. On the other
hand, placing two compatible islands near each other increases the
possibility of merging them into one single island, which eventually
leads to a solution with a lower cost. Additionally, an island having
more interconnections with its compatibleislands should be given a
higher priority in being placed nearby since more interconnections
between separate voltage islands implies more level shifters, which

181

Algorithm
begin

L1: Given the initial island partitioning and floorplanning;
L2: Perturb the current solution;
L3: Update VICG;
L4: Floorplan for VICG edge weight minimization;
L5: Merge voltage islands;
L6: for each newly merged island do
L7: Floorplan for area minimization;
L8: end do
L8: Cost calculation;
L9: if satisfactory solution found then
L10: Output solution;
L11: Return;
L12: else if meet exit criteria then
L13: Output best solution so far;
L14: Return;
L15: else Go to L2;
L16: end if

end

Figure 2: Outline of floorplanning and island merging algo-
rithm.

leads to higher area costs. The constant α is used to distribute the
effort in minimizing the level shifter area overhead versus the ef-
fort in minimizing the number of voltage islands. More specifically,
given a larger value of α, the algorithm will give a higher priority
to minimizing the level shifter area overhead. On the other hand,
given a smaller value of α, minimizing the number of voltage is-
lands become the primary goal in the optimization process.

The use of the VICG structure also offers enough flexibility in
setting up different optimization objectives. For instance, we can
easily add interconnect performance into our optimization by giv-
ing higher weights to those edges which lie on the critical path such
that the length of the corresponding interconnects can be indirectly
minimized.

3.2 Outline of Algorithm
Our approach is based on simulated annealingwhich guides the

floorplanning and the island merging processes through the VICG
graph. Figure 2 outlines the main steps of our approach.

As shown in Figure 2, given an initial voltage island partition-
ing and its associated floorplanning, the approach iteratively im-
proves the solution quality by local perturbation, re-floorplanning
and islands merging. Specifically, given the current solution, we
first perturb it as described in subsection 3.4. This perturbation is
then reflected back to the corresponding VICG. Next, a chip-level
floorplanning is applied with the goal of finding a floorplan where
compatibleislands are likely to be placed adjacently. Following
that, the island merging process consists of detecting the regions
that contain potentially mergable islands (and eventually merging
those islands), provided that the newly formed islands do not cause
overlaps in the floorplan. In order to shrink the area of these is-
lands, an island-level floorplanning is applied to each of the newly
merged islands with the goal of minimizing its bounding box. Fi-
nally, this new solution is evaluated and its costs calculated. The
above process is repeated until a satisfactory solution is found or,
if this is not possible, a certain exit criteria (e.g. reaching a certain
number of iterations) is met.

We use a unified cost function which is a weighted sum of dif-
ferent metrics including the number of islands, average power con-
sumption, and area overhead. Note that given the flexibility of the

simulated annealing algorithm, other cost functions (e.g. routing
congestion) can be also included, if necessary. This will be further
discussed in subsection 3.6.

3.3 Integrated Floorplanning Process
As it appears from Figure 2, the speed of the newly proposed

approach is determined mainly by the floorplanning process. More
specifically, at each iteration, two successive floorplanning steps
need to be applied:
� The chip-levelfloorplanning (L4 in Figure 2) tries to arrange the
compatibleislands in adjacent positions by minimizing the follow-
ing cost function:

cost= ∑
8i; j

w(ai; j)�d(πi ;πj) (2)

where d(πi ;πj) represents the center-to-center Manhattan distance
between islands πi and πj in the floorplan; w(ai; j) has been defined
in (1).
� The island-levelfloorplanning (L7 in Figure 2) is applied to each
newly merged island, as the composing cores inside the merged is-
land may not be placed compactly enough. The floorplanning with
the goal of area minimization helps not only in reducing the dead
space inside these newly formed islands, but also in legalizing the
newly generated floorplan by reducing the risk of islands overlap-
ping.

Obviously, an efficient implementation of the floorplanner is crit-
ical for the performance of our approach. In this paper, we use
a floorplanner based on sequence pair representation and evalua-
tion [6]. The floorplanner uses simulated annealing on sequence
pair data structure [7], and is capable of evaluating in O(nlog logn)
time, where n stands for the total number of blocks; typically it
ranges from 5 to 100 for current practical designs. Move bound
support is achieved by adding some dummy blocks. To exploit the
property that a merged island contains just a few cores (typically
under 5), the island-level floorplanner automatically switches be-
tween simulated annealing mode and the enumerating mode based
on the number of composing cores in the target island; this helps
reducing the run time.

3.4 Solution Perturbation
Perturbations to the current solution are performed at the begin-

ning of each iteration. More precisely, one of the following three
moves is probabilistically chosen:

� Island split move (ISM):

A voltage island, which consists of more than one cores, is
randomly picked and split up into a set of islands.

� Island voltage change move (IVCM):

In this move, a voltage island which supports two or more
legal supply voltages is randomly chosen and its supply volt-
age level randomly switched to one of its legal voltages.

� Multi-island voltage change move (MIVCM):

In this move, a voltage supply level li is randomly picked
up and all the islands which supports li will be assigned to
voltage li .

All three perturbations lead to changes in the VICG graph that
corresponds to the current solution. More specifically, the IVCM
and MIVCM moves change the relevant arc weights, while the ISM
move changes not only the VICG’s arc weights, but also its topol-
ogy. Obviously, compared to IVCM, ISM and MIVCM have a

182

Algorithm
begin

L1: Sort voltage levels by the number of related islands;
L2: for each supply voltage level li do
L3: Find all islands with voltage li ;
L4: Create rectangular region R;
L5: Add R to split list L;
L6: while L 6= fg do
L7: Get next region R from L;
L8: if R contains no more than one island then
L9: Continue;
L10: if Roverlaps with an incompatible island πa then
L11: Cut R using πa into smaller regions;
L12: Combine new generated regions;
L13: Add new regions to L;
L14: else
L15: Merge islands in R to πn;
L16: Floorplan πn for area minimization;
L17: end if
L18: end do
L19: end do

end

Figure 3: Outline of island merging process.

more significant perturbation on the current solution and are thus
more suitable for being applied when the annealing temperature is
high.

3.5 Island Merging
Following perturbation and chip-level floorplanning, the islands

that are compatible with each other are likely to be placed in adja-
cent positions. The heuristic in Figure 3 is then applied to detect
and merge the islands that can be merged.

As shown in Figure 3, the supply voltage levels used in the sys-
tem are first sorted based on how many voltage islands are assigned
to a given voltage level. More precisely, the voltage levels that are
used by more voltage islands are given a higher priority. Intuitively,
the more islands use the same voltage level, the higher the proba-
bility of finding mergable islands using that voltage is.

Next, we perform the following operation on each voltage level
in this list. For each voltage level li , all the voltage islands that use
li are selected and a rectangular region R is created by drawing the
bounding box of these islands (step L4 in Figure 3). Obviously, to
reduce the number of voltage islands in the system, we would like
to merge all these islands at li into one single merged island with
shape R. Unfortunately, R may overlap with other islands, thus
rendering the floorplan infeasible. Additionally, creating a merged
island with shape R may significantly increase the area overhead
due to the dead space. The loop L6 to L18 in Figure 3 resolves the
aforementioned problems by recursively cutting the region R into
smaller regions together with island-level floorplanning.

To better describe our merging algorithm, Figure 4 provides a
step by step illustration of the island merging process. Figure 4(a)
gives an example of a piece of the initial floorplan for a chip image.
As shown in step L4 of Figure 3, the initial rectangular region R is
the external bounding box in Figure 4(a). Because it overlaps with
an incompatible island (π0) which uses a different voltage level,
creating a merged island with the size of this bounding box is not
feasible. (Additionally, such a solution will also contain a signifi-
cant amount of dead space.) Consequently, the steps L6 to L18 in
Figure 3 are necessary to solve this issue. More specifically, the
original region is divided into 8 new regions by cutting it around

π1

π2

π3

π4

π5

π0

(a)

π1

π2

π3

π4

π5

π0

(b)

R1

R2

R3

R4 R5

R6

R7

R8

π1

π2

π3

π4

π5

π0

(c)

R1

R7

π1

π2

π3

π5

π0

(d)

R1

R7

π4 π6

π3

π7

π0

(e)

Figure 4: An example for island merging. π1–π5 are compatible
islands. π0, π2, and π5 are fixed.

π0 (as shown in Figure 4(b)) 2. In the next steps, these newly gen-
erated regions are merged to form larger regions. Regions contain-
ing more islands are given a higher priority for combination, such
that more islands will likely be merged in the following steps. For
instance, region R7 will be combined with region R8 instead of re-
gion R6 since combining regions R7 and R8 generates a new region
which contains two islands. On the other hand, if we combine re-
gions R6 and R7 instead, the newly formed region would contain
no island. Figure 4(c) shows the new regions (R1 and R7) left after
the combining step.

The above procedure is repeated until the regions under consid-
eration do not overlap with any incompatible island. For each of
these remaining regions, a new island will be built by merging the
islands inside the corresponding regions. Meanwhile, the island-
level floorplanner is applied to each of these newly merged islands
to minimize their outlines. For instance, Figure 4(d) shows the pic-
ture of this step, while Figure 4(e) gives the partitioning and the
floorplan at the end of this iteration. Since islands π6 and π7 con-
tain cores with fixed location, both of them will be marked as fixed
islands.

It is worth mentioning that the existence of fixed cores (or cores
with move bound) adds extra complexity to island-level floorplan-
ning. In such cases, a minimal outline floorplan has to be found
under the constraints of satisfying fixed core and/or specified move
bounds. On the other hand, most of the previous work in floor-
planning either assumes no move bound constraints when dealing
with area minimization, or targets finding a floorplan under fixed
outlines. Thus, previous results in floorplanning can notbe directly
applied to solve our problem.

We used the heuristic in Figure 5 for island-level floorplanning;
this converts the problem of area minimization into the one of find-
ing a feasible floorplan under a given outline. As shown in Figure 5,
the procedure uses the bounding box obtained after the cutting (for
instance, the rectangle R1 in Figure 4(c)) as the starting outline for
floorplanning. If a feasible floorplan can be found, the procedure
tries to decrease the size of the outline by incrementally shrinking it
from the chosen boundary (north, east, south or west). The starting
boundary for the shrinking process depends on the current slack in
the floorplan, while taking into consideration the relative position
of the move bounds or the fixed cores with regard to the current out-

2Depending on how an incompatible island overlaps with the re-
gion, the number of new regions may vary.

183

line boundary. This process is repeated until the outline can not be
shrunk any further; this minimum then corresponds to the bounding
box with the minimal area. We note that although multiple floor-
planning runs are needed in order to floorplan just one island, the
execution time is actually quite acceptable since the voltage island
usually contains a small number of cores.

Algorithm
begin

L1: outline = original bounding box;
L2: while feasible floorplan exist do
L3: floorplan = find floorplan with outline;
L4: b = decide boundary to shrink;
L5: shrink outline from boundary b;
L6: end do
L7: return floorplan;

end

Figure 5: Outline of island-level floorplanning.

3.6 Possible Extensions
The cost function used in this paper includes the area overhead,

the number of voltage islands and the power consumption of the tar-
get system. However, our approach can be extended to incorporate
other factors of interest in the design process. For instance, in de-
signs where the routing congestion becomes a serious issue, the to-
tal wire length usually needs to be minimized during the floorplan-
ning. The approach presented in this paper can easily be adapted to
consider this scenario by modifying the arc weights equation of the
VICG as follows:

w(ai; j) =

�
1+α�wiresi; j +β�wiresi; j ; if v(πi) = v(πj)
β�wiresi; j ; otherwise

(3)
where β is a constant which is specified by the designer to control
how much effort should be devoted to the wire length minimization.

Another important extension would be to provide support for
bounded delay for the critical nets at this architecting stage. This
is especially important as the interconnect delay has become a se-
rious issue in deep sub-micron designs. To this end, we are cur-
rently working on providing this type of performance constraint
using techniques similar to that proposed in [8]. By adding dummy
blocks to force the move bound of the related cores, the floorplan-
ner guarantees that these critical nets will notexceed their specified
length, which is directly related to the wire delay. However, caution
must be taken to guarantee the convergence of the optimization pro-
cess where many constraints and optimization objectives need to be
considered simultaneously.

Another way to address the interconnect timing issue in volt-
age island architecting is through the direct interaction with the de-
signer. In this case, the designer would adaptively add additional
constraints before applying the voltage island architecting tool. For
instance, if it is found that in the current solution the timing con-
straints are violated for the links between two cores ci and cj , the
designer can go back to the input specification, add a move bound
mbi; j for both ci and cj , and then re-apply the tool to this mod-
ified input, such that the upper bound of the distance between ci
and cj can be guaranteed. This will automatically ensure that the
timing constraints are satisfied. Additionally, if the signal between
ci and cj is not registered at the core boundary, the designer can
also restrict the allowed voltage levels used by ci or cj , such that
the timing constraints of the interconnects between ci and cj can

Table 1: Floorplanning results

cores area # vi run power area
util. time (s) savings overhead

i1 23 (10) 73.1% 3 154 16.9% 8.3%
i2 10 (3) 50.0% 2 197 14.0% 3.2%
n10 10 (2) 50.2% 2 327 27.6% 1.5%
n30 30 (3) 74.4% 4 291 19.6% 0.3%
n50 50 (3) 63.4% 5 607 18.7% 4.3%

be relaxed. This process can be iterated until the results generated
by the tool satisfy all the timing constraints, in addition to those
imposed on power and area.

4. EXPERIMENTAL RESULTS
We implemented a prototype tool written in C++ and based on

the algorithms presented in Section 3. Table 1 summarizes the ex-
amples we constructed for the experiment, which include two in-
dustrial (i1, i2) and three synthetic benchmark (n10, n30, n50)
examples. The second column shows the number of cores. The
initial floorplan is constructed by fixing the position of some cores
and then running the automatic floorplanner. The number of cores
that are pre-placed is shown in parenthesis in the second column.
We assume that all cores are operated by a single supply voltage in
the initial floorplan. We also assume a list of voltage levels avail-
able for each core in Table 1. In order to give the highest priority
to minimizing the number of voltage islands, we assigned α to be
0 for all these experiments.

For the industrial examples (i1 and i2), the power consump-
tion has been obtained from a spreadsheet. In the case of the other
three benchmark examples, we generated the power consumption
values assuming that they are proportional to the area of each block
and then scaled them appropriately with each supply voltage. The
third column shows the area utilization for a given chip image. The
fourth column shows the final number of islands that are created,
which is equal to the constraint imposed on the maximum number
of voltage islands for each example. The last two columns show the
power savings and area overhead with respect to the initial floorplan
where all cores operate at the chip level voltage. The area overhead
includes the dead space inside the voltage islands and additional
area due to the power rings. Note that we assume a fixed frame
floorplanning: the unused space at chip-level is not considered to
be a dead space because that area is a resource for chip-level logic
such as test logic and buffers, and for those cores that are being
designed.

The results in Table 1 show that our algorithm is very fast. It typ-
ically finishes in minutes with the actual run time depends on the
size of the design and the constraints imposed on it. The results also
suggest that our algorithm gives high-quality solutions with respect
to power savings, area overhead, and the number of islands used
in the design. Since the cost function is a weighted sum of differ-
ent metrics, different solutions can be obtained by controlling the
weights depending upon designer’s assessment of the importance
of each metric. For example, one can increase the weight for the
power savings at the cost of area overhead if the target application
is supposed to work under a tight energy budget.

Power savings that can be obtained are dependent on several
factors: the constraints on the number of voltage islands, the pre-
placed blocks that may interfere with creating voltage islands, the

184

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

P
o
w
e
r

s
a
v
i
n
g
s

[
%
]

voltage islands

n10

n50

Figure 6: Power savings with the number of voltage islands for
benchmark examples n10 and n50.

proximity constraints to power pins, the available voltage levels of
each core. Thus, it is difficult to assess the quality of solutions for
a given problem instance. However, by relaxing the constraints on
the number of voltage islands and on the proximity to the power
pins, we can plot the power savings as a function of the number of
voltage islands; this can give a rough idea of how good the solu-
tion is. Figure 6 confirms that the power savings increase if more
voltage islands are created for a particular benchmark n10. Note
that 10 voltage islands correspond to the case when the maximum
power savings are achieved; that is, it is an upper bound. The upper
bound would be reached much earlier if, for instance, we increase
the weight for the power savings at the cost of increased area over-
head. The same process is repeated in Figure 6 for n50, which
indeed shows the same trend.

Figure 7 shows the floorplanning result for the example i1, which
is a design consisting of IBM PowerPC 405 and peripheral cores
connected to the CoreConnect bus architecture [1], [9]. The solid
boxes (shown in black) indicate the pre-placed cores in the initial
floorplan; this topological arrangement is determined by the I/O
requirements and the dataflow between a core and its associated
buffers (SRAM cores). We assume that all cores are hard cores3

and operate at a single 1.3V supply in the initial design. For voltage
islands planning, we assign legal voltages within the range 1.0V to
1.3V for each core. For example, c1 can be operated at f1.1V,
1.2V, 1.3Vg, c2 at f1.0V, 1.1V, 1.2V, 1.3Vg, and c5 at f1.3Vg.
Three voltage islands are created as a result of running our tool:
two shown with enclosing rectangles both with 1.1V supply, and
the third one consisting of a single core (c1) powered by 1.0V. The
experimental results are summarized in Table 1. Note that c2 is still
at 1.3V although its minimum legal voltage is 1.0V. It could be op-
erated at 1.1V instead of 1.3V if it is included in the voltage island
on the left-hand side of the image, but that would lead to a signifi-
cant dead space in the voltage island since c2 has a fixed location.
c4 is powered by 1.1V, which is the supply of the enclosing voltage
island, although its minimum legal voltage is 1.0V, while c3 is at
its minimum supply.

5. CONCLUSION
In this paper, we addressed the problem of voltage islands plan-

ning for core-based SoC designs. This novel problem involves par-

3Note that, as indicated in the previous sections, the algorithm and
the tool we implemented can handle soft cores as well.

c1

c2

c3 c4

c5

Figure 7: Floorplanning result for i1.

titioning cores into several islands and floorplanning both at chip-
and island-level. By using a graph-based representation, we have
shown that we can model the partitioning and floorplanning steps
in an integrated fashion. We proposed a simulated annealing-based
algorithm which gives high quality solutions with respect to power
savings, area overhead, and the number of voltage islands that are
used in the design. The proposed cost function is flexible and can
be extended to include other design metrics such as routing conges-
tion and performance.

References
[1] R. A. Bergamaschi, Y. Shin, N. Dhanwada, S. Bhattacharya,

W. E. Dougherty, I. Nair, J. Darringer, and S. Paliwal, “SEAS:
A system for early analysis of SoCs,” in Proc. Int’l Conf. on
Hardware/Software Codesign and System Synthesis, Oct. 2003,
pp. 150–155.

[2] M. Pedram and J. Rabaey, Power Aware Design Methodolo-
gies, Kluwer Academic Publishers, 2002.

[3] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W.
Gould, and J . M. Cohn, “Managing power and performance for
System-on-Chip designs using voltage islands,” in Proc. Int’l
Conf. on Computer Aided Design, Nov. 2002, pp. 195–202.

[4] A. B. Kahng, “Classical floorplanning harmful?,” in Proc. Int’l
Symp. on Physical Design, Apr. 2000, pp. 207–213.

[5] F. N. Najm, “A survey of power estimation techniques in VLSI
circuits,” IEEE Trans. on VLSI Systems, vol. 2, no. 4, pp. 446–
455, Dec. 1994.

[6] X. Tang and D. F. Wong, “FAST-SP: a fast algorithm for block
placement based on sequence pair,” in Proc. Asia South Pacific
Design Automat. Conf., Jan. 2001, pp. 512–526.

[7] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI
module placement based on rectangle-packing by the sequence
pair,” IEEE Trans. on Computer-Aided Design, vol. 15, no. 12,
pp. 1518–1524, Dec. 1996.

[8] X. Tang and D. F. Wong, “Floorplanning with alignment and
performance constraints,” in Proc. Design Automat. Conf.,
June 2002, pp. 848–853.

[9] IBM Corp., “IBM platform-based design kit,” http://www-
3.ibm.com/chips/products/asics/methodology/design kit.html.

185

