Minimizing Leakage of Sequential Circuits through Flip-Flop Skewing and Technology Mapping

Sewan Heo‡ and Youngsoo Shin§
‡ETRI, Daejeon 305-700, Korea
§Department of Electrical Engineering, KAIST, Daejeon 305-701, Korea

Abstract—Leakage current of CMOS circuits has become a major factor in VLSI design these days. Although many circuit-level techniques have been developed, they require significant amount of designers’ effort and are not aligned well with traditional VLSI design process. In this paper, we focus on technology mapping, which is one of steps of logic synthesis when gates are selected from a particular library to implement a circuit. We take a radical approach to push the limit of technology mapping in its ability to suppress leakage current: we use a probabilistic leakage (together with delay) as a cost function that drives the mapping; we consider pin reordering as one of the options in the mapping; we increase the library size by employing gates with larger gate length; we employ a new set of flip-flop that is specifically designed for leakage through selective increase of gate length. When all techniques are applied to several benchmark circuits, a leakage saving of 46% on average is achieved with 45-nm predictive model, compared to the conventional technology mapping.

I. INTRODUCTION

Scaling down of transistors has resulted in dramatic increase of leakage current. Threshold voltage of MOSFET devices has been scaled down to compensate for the reduced circuit performance in low supply voltage, which leads to exponential increase of subthreshold leakage. Gate oxide has been scaled down as well for better control of MOSFET channel current, which leads to large amount of gate leakage. The leakage current, in fact, has become a major portion of total power consumption, and, in many technologies, it contributes up to 50% of the overall power consumption [1].

Many circuit-level techniques have been proposed to control leakage such as power gating, body bias, input vector control, selective MTCMOS, zigzag power gating, mixed Vt, and so on [1]. However, most of these techniques require significant amount of designers’ effort and the support of dedicated design tools, which is one of reasons why these techniques are not yet prevalent in large scale circuit design.

In this paper, we focus on technology mapping, which is one of steps of logic synthesis when gates are selected from a particular library to implement a circuit. The technology mapping takes an optimized (in technology independent way) logic network as its input and outputs a netlist of gates, which minimizes a total cost (usually area, delay, or the combination of the two). Since the technology mapping is the only step in logic synthesis where the detailed leakage information is available, we take a radical approach to see how much leakage can be saved while timing constraints are satisfied. We use a weighted sum of probabilistic leakage and delay as a cost function of the mapping as opposed to traditional area and delay. We consider pin reordering as one of the options in the mapping. We increase the library size by employing gates with larger gate length, thus less leakage with slight increase of delay. We employ a new set of flip-flops that are specifically designed for leakage through selective increase of gate length. Depending on the state probability of each flip-flop, we either choose the gate-length-biased flip-flop or the one with its state complemented. The results with several benchmark circuits show that we can reduce leakage by 46% on average.

The remainder of this paper is organized as follows. In the next section, we briefly explain gate-length biasing and pin reordering, which are two main techniques we use in the technology mapping, followed by the overall flow of our mapping procedure. In Section III, we propose a gate-length-biased flip-flop, which has characteristics of unequal leakage and delay, and phase assignment procedure that exploits these flip-flops. Experimental results with several benchmark circuits are presented in Section IV, and we draw conclusion in Section V.

II. PRELIMINARIES

A. Gate-Length Biasing

Gate-length biasing involves a small increase in the gate lengths of devices. In a 130-nm industrial process, it is reported [2] that an 8 nm increase in gate length yields 30% decrease in leakage with a 5% increase in delay for a minimum size inverter. This large decrease in leakage with just a small delay occurs because the nominal gate length of the technology is usually very close to the knee of the leakage versus gate length curve that is produced by short channel effects. This small increase in gate length does not affect printability during the manufacturing process, and can usually allows pin compatibility with the unbiased version of the cell, which benefits post placement optimization.

In addition to a set of gates with nominal gate length, we have the same set of gates with larger gate length as shown in Fig. 1. For sequential elements such as flip-flops, we apply
gate-length biasing, but only to a subset of the transistors, which will be explained in Section III.

B. Pin Reordering

Pin reordering refers to exchanging the inputs of a gate when they are compatible [3]. Take an example of two-input NAND gate with inputs A and B (with A being closer to the output). If the signal probability of B is higher than that of A, exchanging two inputs can help reduce gate leakage, since the nMOS device connected to B can be a main source of gate leakage when its gate terminal (B) is driven by the signal of high probability of being one.

Furthermore, when combined with gate-length biasing, pin reordering can lead to a substantial reduction of gate leakage, since subthreshold leakage can be reduced by proper gate-length biasing. Our experiments reveal that about 80% of leakage can be reduced in four-input NAND gates via combined pin reordering and gate-length biasing.

C. Overall Flow

Fig. 1 shows the overall flow of the proposed technology mapping. It takes a logic network of a sequential circuit representing multiple Boolean functions (i.e. flip-flop input functions and circuit output functions) as its input and generates a gate-level netlist, where gates are selected from a technology library. In the library, we assume gates with larger gate length in addition to those with nominal gate length.

In order to obtain a state probability (i.e. probability of Q-output of each flip-flop), we simulate the network with a sequence of sample input patterns, monitor the Q-outputs, and derive their probabilities. These probabilities, together with signal probabilities of primary inputs, are propagated through the network [4] to obtain probabilities of all the nets. These probabilities are used to derive the leakage of any gate that is to be mapped on the network.

Before we start the mapping of combinational subcircuit, we go through a step, which we call phase assignment. In this step, we try to minimize the leakage of flip-flops, which will be explained in detail in the next section.

III. Phase Assignment

A. Gate-Length-Biased Flip-Flop

Fig. 2(a) shows an example D flip-flop with inverter and tristate inverter implementation. Over the operation of flip-flops, both D-input and Q-output have the same logic state most of the time, since a new D-input which is one of the outputs of combinational subcircuit (and arrives shortly before active clock edge) will be captured and propagated to the Q-output at active clock edge. The leakage for two possible flip-flop states are also shown in Fig. 2(a), which indicates that the leakage is very close each other.

However, if we employ gate-length biasing only to those transistors that are turned off when both D-input and Q-output are low as shown in Fig. 2(b), the leakage for those two
flip-flop states can be made very different. Specifically, if we increase the gate length of the transistors, which are marked in Fig. 2(b), the leakage when D-input and Q-output are low becomes 480 nA as opposed to original 1133 nA. The leakage when D-input and Q-output are high is also reduced (from 1153 nA to 936 nA), mainly due to two gate-length-biased transistors in the cascaded inverters for internal clock signals.

The gate-length-biased flip-flop has skewed timing parameters. The rising and falling clock-to-Q delay is increased by 32% and 7%, respectively. The increase of rising delay is larger than that of falling delay since the transistors whose gate length is increased are sensitized for rising signal. The rising and falling setup time is increased by 34% and 24%, respectively.

B. Phase Assignment of Flip-Flops

Since the leakage of gate-length-biased flip-flops are very different for different flip-flop states, it can be exploited during the technology mapping as shown in Fig. 1 (the box named phase assignment). If the state probability is higher than 0.5, we want to have the state complemented, so that it has more chance to remain in low leakage state (both D and Q are low). This can be accomplished as follows. As an example of a sequential circuit as shown in Fig. 3, suppose we want to complement the state of the first D flip-flop. We simply insert two inverters: one before the D-input and the other after Q-output. The second inverter can be avoided if \overline{Q} is available, since we can achieve the same goal by swapping Q and \overline{Q}. The extra inverters, if left, may not be an overhead, since they can be absorbed in the combinational subcircuit and, after its mapping, they are likely to disappear. The same holds for other types of flip-flops. For example of J-K flip-flop, it can be readily shown that by exchanging J and K inputs and Q and \overline{Q} outputs, respectively, we can complement the original flip-flop state.

For flip-flops with state probability less than 0.5, we simply use gate-length-biased flip-flops (as far as timing of the circuit is satisfied) without complementing their states.

IV. EXPERIMENTAL RESULTS

We performed experiments on a set of circuits taken from the MCNC and ISCAS’89 benchmarks. Each circuit was synthesized with SIS [6] and mapped into a gate library, which we built for 45-nm predictive model [7]. The proposed technology mapping was implemented in SIS [6] environment as well.

Shown in the first three columns of Table I are the name of the circuits, the number of gates in the combinational subcircuit, and the number of flip-flops. In the fourth column, we see the amount of leakage saving when we use a cost function of weighted sum of leakage and delay (refer to Fig. 1) compared to leakage when conventional cost function of area and delay is used. For each circuit, we assume 1.5 times of critical path delay (when we map the circuit with cost function of delay alone) as its timing constraint. We see about 13% saving on average. When we employ pin reordering and library of gate-length-biased gates to our mapping, the total saving increases to about 32% on average as shown in the fifth column, implying that combined pin reordering and gate-length biasing alone yields about 19% of leakage saving. After we employ phase assignment of flip-flops, the overall saving even goes up to 46% on average (sixth column), which is significant.

The effect of each technique for leakage reduction is analyzed with an example circuit s382 in Fig. 4. The leakage is normalized to the total leakage of the circuit when it is mapped with conventional cost function of area and delay (leftmost bar). The effect of the mapping with a cost function of leakage and delay is reflected in the second bar. The effect of pin reordering in the combinational subcircuit alone is shown in the third bar. The fourth bar represents the effect of gate-length-biasing on sequential as well as combinational portion of the circuit. The last bar indicates the effect of phase assignment.

Since our technology mapping is driven by input signal probabilities, which can vary over execution of circuits, it is important to guarantee sizable leakage saving even though there is a variation of input signal probabilities. Fig. 5 shows the variation of leakage saving of MCNC benchmark circuits for different input signal probabilities. Each bar represents a range of leakage saving under 100 different average input probabilities of circuit inputs. The dot in each bar indicates the average leakage saving. We also repeat the same experiment.
for different timing constraints. The timing constraint of each circuit is assumed 1.2 and 1.3 times, respectively, of critical path delay (when we map the circuit with cost function of delay alone). As we allow loose timing constraint, the leakage saving is increased, as it must.

Since our mapping involves leakage, which is a function of temperature, and the mapping is performed for fixed temperature, while temperature itself varies over time, it is important to ensure that the mapping is not too sensitive to temperature. We take four example circuits, map them at fixed temperature, and simulate them to see their leakage saving while we vary temperature, as shown in Fig. 6. The leakage saving increases with temperature, as expected. At higher temperature, the circuits are more leaky and gate-length-biasing is more effective, which governs the leakage saving. As temperature is decreased, the absolute leakage itself is decreased, and pin reordering is a main driver for leakage saving.

V. CONCLUSION

Although many circuit techniques have been proposed, they do not align well with conventional VLSI design due to many custom engineering. In this paper, we proposed leakage-aware technology mapping, which is one of steps of logic synthesis and is usually transparent to designers. We tried every efforts to push the limit of capability of technology mapping in terms of leakage saving. We used a probabilistic leakage (together with delay) as a cost function that drives the mapping; we considered pin reordering as one of the options in the mapping; we increased the library size by employing gates with larger gate length; we employed a new flip-flop that is specifically designed for leakage through selective increase of gate length. When all techniques are applied during technology mapping, an average leakage saving of 46% was achieved, compared to the conventional technology mapping.

REFERENCES