
Retiming and Time Borrowing: Optimizing
High-Performance Pulsed-Latch-Based Circuits

Seonggwan Lee
Dept. of Electrical

Engineering, KAIST
Daejeon 305-701, Korea

Seungwhun Paik
Dept. of Electrical

Engineering, KAIST
Daejeon 305-701, Korea

Youngsoo Shin
Dept. of Electrical

Engineering, KAIST
Daejeon 305-701, Korea

ABSTRACT

Pulsed-latches take advantage of both latches in their high
performance and flip-flops in their convenience of timing
analysis. To minimize the clock period of pulsed-latch-based
circuits for a higher performance, a problem of combined re-
timing and time borrowing is formulated, where the latter
is enabled by using a handful of different pulse widths. The
problem is first approached by formulating it as an inte-
ger linear programming to lay a theoretical foundation. A
heuristic approach is proposed, which solves the problem
by performing clock skew scheduling for the minimum clock
period and gradually converting skew into a combination
of retiming and time borrowing. Experiments with 45-nm
technology demonstrate that the clock period close to the
minimum can be achieved for all benchmark circuits with
an average of 1.03× with less use of extra latches compared
to the conventional retiming.

Categories and Subject Descriptors: B.6.1 [Logic De-
sign]: Design Styles—Sequential circuits; B.7.1 [Integrated
Circuits]: Types and Design Styles—VLSI

General Terms: Algorithms, Design

Keywords: Pulsed-latch, sequential circuit, retiming, time
borrowing, clock period

1. INTRODUCTION
Latches are widely used in high-performance custom de-

signs such as microprocessors. Application-specific integrated
circuit (ASIC) designs, on the other hand, mostly use flip-
flops for their convenience of timing analysis, i.e. each com-
binational block between flip-flops can be analyzed inde-
pendently. A flip-flop, however, is slower than a latch; the
sequencing overhead of a flip-flop is 3 or 4 FO4 delays while
that of a latch is 2 [1]. This is unavoidable because a flip-
flop is typically constructed by connecting two latches in a
master-slave fashion.

A pulsed-latch [2–8] is a latch driven by a brief clock
pulse. Since the length of time when the latch is transpar-
ent thereby capturing input data is very short, its behav-
ior is very similar to an edge-triggered flip-flop. Therefore,

PG1

PG2

L1

L2

Clock
source

2

1

3

Figure 1: Pulsed-latch-based circuits with local
pulse generators PG1 and PG2.

pulsed-latches have advantages of both latches (low sequenc-
ing overhead) and flip-flops (convenience of timing analysis).
The clock pulse can be either internally generated by latch
itself [2, 4], or generated by pulse generators [3, 7]. When
pulse generators are used, they deliver clock pulse only to
latches located physically very close because the pulse can
be easily distorted. Figure 1 illustrates pulsed-latch-based
circuits using pulse generators; a normal clock is delivered,
via clock distribution network, from a clock source to pulse
generators, which then deliver the pulse to the local latches.

To optimize pulsed-latch-based circuits for a higher per-
formance, clock skew scheduling [9] can be applied. It in-
tentionally applies clock skew so that latch-to-latch timing
critical paths get more time to compute, which effectively re-
duces the clock period. Large amount of skew, however, has
become difficult to implement, because within-die process
variations affect extra buffers and wires that are inserted to
realize skew in randomly different amount, thereby causing
uncertainties in skew [10, 11]. Small amount of skew, e.g.
10% of the clock period [10], on the other hand, severely
restricts the extent of the clock period that can be reduced
by clock skew scheduling. This can be alleviated by using
time borrowing, which is offered by employing different pulse
widths, together with skew [12]. As shown in Figure 1, if L1

receives a pulse with width 1 and L2 receives a pulse with
width 3, which is also skewed by 2, the combinational logic
between L1 and L2 can use (3 − 1) + 2 = 4 more time than
the clock period; equivalently, for a given delay of combina-
tional logic, the clock period can be reduced. Using a wider
pulse, however, comes at the cost of increasing chance of
hold time violations.

Due to increasing within-die process variations with tech-
nology scaling [13], even small amount of skew is becoming

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICCAD’09, November 2–5, 2009, San Jose, California, USA.

Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00 .

375

difficult to realize in a reliable manner. As an example, we
took a 4-level buffered clock tree and implemented skew of
76 ps in 0.99-V, 45-nm commercial technology. We then
performed the Monte Carlo simulation 5000 times to see the
quantitative effect of within-die process variations on skew;
a standard deviation was 15 ps, which is 20% of a target
skew, with the minimum and the maximum skew of 24 ps
and 126 ps, respectively.

Retiming [14] is another candidate of optimizing perfor-
mance. It moves positions of latches across nearby combina-
tional gates, thus is a local optimization as opposed to clock
skew scheduling that handles a global clock tree. It therefore
is less susceptible to process variations and can overcome
the aforementioned limitation of clock skew scheduling. The
main limitation of retiming, however, is a large increase in
the number of latches. It is commonly observed that the
number of latches (or flip-flops) gets doubled or tripled [15].

In this paper, we address a problem of minimizing the
clock period of pulsed-latch-based circuits by using retim-
ing and time borrowing, where the latter is realized by em-
ploying multiple pulse widths (Section 2). We first solve the
problem in optimal way by formulating it as an integer linear
programming (Section 3); this, however, is only applicable
to circuits of very small size. We thus propose a heuristic,
which relies on the equivalence of retiming and clock skew.
We initially perform clock skew scheduling to minimize the
clock period; skew is then gradually converted to the combi-
nation of retiming and time borrowing; the remaining skews
after conversion are removed to determine the final clock
period (Section 4). Experiments with 45-nm commercial
technology shows that the heuristic approach yields clock
period close to minimum (average of 1.03×) with 16% in-
crease of latches, which is in contrast to the conventional
retiming with the average clock period of 1.11× with 27%
increase of latches (Section 5).

2. PROBLEM FORMULATION
In this section, we briefly review conventional retiming

for minimum clock period (Section 2.1), which we extend to
retiming and time borrowing of pulsed-latches (Section 2.2).

2.1 Retiming
A sequential circuit is modeled as a directed graph G =

(V, E, d, w), where v ∈ V corresponds to a combinational
gate with propagation delay d(v), and euv ∈ E models a
connection from u to v with the number of registers on it
denoted by w(euv). A retiming refers to assigning integer
to each vertex; the weight of euv after retiming, denoted by
wr(euv), is defined by

wr(euv) = w(euv) + r(v) − r(u), (1)

where r(v) is a retiming on v and indicates the number of
registers that are moved from its output to its inputs. Any
retiming has to satisfy wr(euv) ≥ 0:

r(u) − r(v) ≤ w(euv), ∀euv ∈ E (2)

which is called a condition for a legal retiming.
Retiming problem to minimize the clock period can be

stated by

Problem 1 Given G = (V, E, d, w), the retiming problem
is to find a legal retiming r : V → Z such that the clock
period T = maxl:wr(l)=0 d(l) is minimized.

v1 v2 vn

3

2

0

0

10 15

10 14

Figure 2: Path delay with time borrowing.

A path of v1, v2, . . . , vn is denoted by l; thus, if the sum of
weights of edges within the path after retiming, denoted by
wr(l), is 0, l is a combinational path. Path delay d(l) is
defined by

d(l) =
n

X

i=1

d(vi). (3)

For a particular clock period φ, retiming has to satisfy

r(u) − r(v) ≤ W (u, v) − 1, ∀D(u, v) > φ (4)

where W (u, v) indicates the minimum number of registers
on the paths from u to v, and D(u, v) denotes the maxi-
mum delay of the paths with W (u, v) registers,1 i.e. D(u, v)
represents the tightest timing requirement between u and v.
A system of difference constraints (2) and (4) can be repre-
sented by a constraint graph, which then can be solved by
Bellman-Ford method [16]. An alternative algorithm with
less time complexity exists [17], which does not use D and
W . To solve Problem 1, the process of setting up difference
constraints and solving them is repeated while we vary φ
through a binary search.

2.2 Retiming Pulsed-Latches
For retiming and time borrowing of pulsed-latches (retim-

ing pulsed-latches, for brevity), a sequential circuit is mod-
eled as G = (V, E, d, w, p), where p ∈ P ∪ {0} is assigned to
each edge e ∈ E indicating the pulse width of w(e) latches
on it; P is a list of pulse widths available in a library of
pulse generators. If w(e) = 0, p(e) = 0 is presumed. We
now state the problem of retiming pulsed-latches.

Problem 2 Given G = (V, E, d, w, p), the problem of retim-
ing pulsed-latches is to find a legal retiming r : V → Z and
pulse width assignment p : E → P ∪{0} such that the clock
period T = maxl:wr(l)=0 d(l) is minimized.

Path delay (3) has to be refined to incorporate the amount
of time borrowing due to the use of different pulse widths:

d(l) =
n

X

i=1

d(vi) −

„

min
ε∈out(vn)

p(ε) − max
e∈in(v1)

p(e)

«

, (5)

where out(vn) is a set of outgoing edges of vn and in(v1)
is a set of incoming edges of v1. Figure 2 shows an exam-
ple. There are two incoming edges of v1, each edge with a
latch; if there are no clock skews, time 3 is the latest time
(ignoring setup time for simplicity) data is available to v1.
We assume two outgoing edges of vn; time 14 is the latest
time data from vn has to arrive so that it can be safely cap-
tured by the latches. The amount of time borrowing by path
v1, v2, . . . , vn is thus −3 + 4 = 1; for clock period of 10, for

1For any path from u to v with its path delay larger than φ,
we require at least one register on the path after retiming,
i.e. W (u, v) + r(v) − r(u) ≥ 1, which yields (4).

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers376

example,
P

d(vi) can be as much as 11. Equivalently, when
we consider d(l) to determine clock period, the amount of
time borrowing has to be subtracted from

P

d(vi) as in (5).

3. ILPFORRETIMINGPULSED-LATCHES
Problem 2 can be solved by using an integer linear pro-

gramming (ILP), which we discuss in this section. For the
ILP formulation, we have (unknown) variables r(v) for all
vertices, which are integers, and p(e) for all edges, which
take one of integers from P ∪ {0}; the objective is to min-
imize φ, which we consider as an integer variable without
loss of generality.

3.1 Constraints
We consider two constraints for the ILP formulation. To

derive the first constraint, we note that, for a clock period
φ, retiming has to satisfy

W (u, v)+r(v)−r(u) ≥ 1, if D(u, v)+p(e)−p(ε)−φ > 0, (6)

for all pairs of e and ε, where e ∈ in(u) and ε ∈ out(v). Note
that W (u, v)+r(v)−r(u) is the minimum number of latches
on the paths from u to v after retiming (recall (4)), which
we denote as Wr(u, v); D(u, v)+p(e)−p(ε)−φ corresponds
to the maximum delay on the paths incorporating time bor-
rowing (recall (5)) subtracted by the clock period, i.e. the
amount of timing violation beyond clock period, which we
denote as V (e, ε). Condition (6) can be re-written as

Wr(u, v) ≥ 1, if V (e, ε) > 0, (7)

or, equivalently, as

V (e, ε) ≤ 0 ∨ Wr(u, v) ≥ 1. (8)

To convert (8) to a linear form, we define the upper bound
of V (e, ε), which is given by

Vub = max
∀u,v

D(u, v) + max
i∈P∪{0}

i − min
i∈P∪{0}

i. (9)

= max
∀u,v

D(u, v) + max
i∈P

i.

Note that Vub is a positive constant. We now decompose (8)
into two cases: V (e, ε) ≤ 0 and V (e, ε) > 0. If V (e, ε) ≤ 0,
then Wr(u, v) may take any value, except that the value has
to be non-negative for a legal retiming, i.e. Wr(u, v) ≥ 0;
this is equivalent to

Wr(u, v) ≥
V (e, ε)

Vub

, (10)

because the right-hand side satisfies −1 < V (e, ε)/Vub ≤ 0
and Wr(u, v) is an integer. If V (e, ε) > 0, then Wr(u, v) ≥ 1
has to be satisfied, which is also equivalent to (10) because
the right-hand side, this time, satisfies 0 < V (e, ε)/Vub ≤ 1.
Hence, (8) is equivalent to (10), which is now linear and
constitutes the first constraint of the ILP formulation.

For the second constraint, if p(e) > 0 for any edge e, we
have to have at least one latch, i.e. wr(e) ≥ 1:

wr(e) ≥ 1, if p(e) > 0. (11)

We use a similar technique ((7) to (10)) to convert (11) to
a linear form, which yields

wr(e) ≥
p(e)

maxi∈P i
. (12)

Note that (12) subsumes (2), i.e. guarantees a legal retim-
ing, because the right-hand side is non-negative.

3.2 ILP Formulation
The ILP to solve Problem 2 can now be summarized by:

minimize φ

subject to w(euv) + r(v) − r(u) ≥ p(euv)
maxj∈P j

, ∀euv ∈ E

W (u, v) + r(v) − r(u) ≥ D(u,v)+p(e)−p(ε)−φ

Vub
.

∀e, ε ∈ E : e ∈ in(u), ε ∈ out(v)

4. HEURISTICAPPROACHTORETIMING

PULSED-LATCHES
The ILP to solve Problem 2 in the previous section can be

applied only to circuits of very small size. In this section, we
address a heuristic approach, which utilizes the equivalence
of retiming and skew [15]; it consists of three steps:

1. Perform clock skew scheduling to minimize the clock
period.

2. Convert skew to retiming and time borrowing.

3. Remove remaining skews, fix hold time violations, and
determine the final clock period.

4.1 ClockSkewScheduling forMinimumClock
Period

This is done by iterative relaxation based approach [18],
which is proved to be optimal. For a particular clock pe-
riod φ, setup time constraint is constructed for each pair of
latches i and j:

Sj ≥ Si + (Tdq + Dij − φ) , (13)

where Si denotes a skew, which is initially set to 0; Tdq

denotes the data-to-Q delay of latch and Dij corresponds
to the maximum delay of combinational block between i
and j. We take any unsatisfied constraint and set Sj to
Si + (Tdq + Dij − φ), i.e. force left- and right-hand sides
to be equal. If Sj becomes larger than φ, process finishes
with fail because φ cannot be satisfied; otherwise, we take
another unsatisfied constraint and repeat the process until
all constraints get satisfied, when we return with success.

The minimum clock period can be found by iteratively set
φ (through a binary search, initially using the minimum and
the maximum value of φ [15]) and perform the aforemen-
tioned clock skew scheduling. Note that, in this approach,
hold time constraints are ignored; logic paths that violate
hold time constraints are fixed later by introducing extra
buffers, which is also common in many approaches to clock
skew scheduling [15,19,20].

4.2 ConvertClock Skew toRetiming andTime
Borrowing

Pulse widths of all the latches are initially set to the min-
imum value ρ = minx∈P x. We take a latch i having non-
zero skew Si, and try to reduce its magnitude |Si| as much
as possible by converting it to retiming as explained in Sec-
tion 4.2.1. If there exists a retiming that decreases |Si|,
that retiming becomes a candidate. We pick the next wider
pulse width Pi ∈ P , which implies time borrowing by the
amount of Pi − ρ. This causes a decrease of skew from Si to
Si − (Pi − ρ). We then try to reduce the magnitude of new
skew by converting it to retiming and decide whether that
retiming can be another candidate. The process is repeated
for all pulse widths in P ; out of all candidates, we select

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 377

S2 = -5

S3 = -4

S1 = -3

Sa = -2

Sb = -1

Sc = 2

S5 = 6

S4 = 5

(a)

(b)

Sd = 3 Se = 4

dAC=1
A
B

C
A

B
C

dBC=2

dAC=2

dBC=1

G1

G2

G3

G4

Figure 3: Converting (a) negative skew S1 to retim-
ing and (b) positive skew S4 to retiming.

the one (Pi and retiming) that yields the largest decrease of
|Si|; if there is a tie, the one with less increase of latches is
selected.

4.2.1 Clock Skew to Retiming

We use an algorithm similar to [15] to convert skew to
retiming, except that we accept a conversion that does not
increase the clock period after retiming move, since relocat-
ing latches may affect the delay of some gates. We informally
explain the algorithm by using an example in Figure 3. We
take a latch 1 having a negative skew S1 = −3 as shown
in Figure 3(a). To reduce S1, we have to perform negative
retiming, i.e. move 1 from input of G1 to its output. This
requires a latch at the other input of G1, which, in turn, is
made possible by performing negative retiming on G2. We
thus compute Sa, the skew of the latch if retiming were to
be performed on G2. We finally compute Sb, the skew of
the latch after retiming on G1. If |Sb| < |S1|, which is the
case in the example, retiming is performed; otherwise, the
latches remain in their original positions.

In Figure 3(b), we take a latch 4 having a positive skew
S4 = 5 and try to perform positive retiming to reduce it.
This requires a latch at the other fanout of G3, which, in
turn, needs retiming on G4. We compute Se, take a min-
imum of S4 and Se, and perform retiming on G3, which
yields Sc and Sd. If both |Sc| and |Sd| are smaller than |S4|,
retiming is performed.

4.2.2 Example

We use an example in Figure 4 to illustrate the procedure
in this section. Let a list of pulse widths be P = {100, 150}
and the pulse width of all latches in a circuit be initialized
to 100. We take a latch 1 having a positive skew of S1 = 35
and perform retiming and timing borrowing to reduce it. We
look for a candidate location of retiming first with P1 = 100,

S1 = 35
P1 = 100

(a)

G2

delay = 30delay = 20

G1

(b)

G2G1

of latches: 1 2

of latches: 1 1

S2 = 5
P2 = 100

S3 = 5
P3 = 100

S1 = 35 -15
P1 = 100 150

S4 = 5
P4 = 150

Figure 4: Converting skew S1 to retiming: (a) when
time borrowing is 0 (P1 = 100) and (b) when time
borrowing is 50 (P1 = 150).

Dij

SjSi

Pi Pj

0 0

Figure 5: Remove remaining skew and determine
new clock period.

which causes relocating latch 1 from the output of G1 to its
inputs as shown in Figure 4(a). This yields two latches while
skew is reduced to S2 = S3 = 5. We then try the next pulse
width, P1 = 150. As shown in Figure 4(b), this allows us to
use time borrowing of 150−100 = 50, which, in turn, lets S1

be decreased from 35 to -15. Since the skew is now negative,
retiming is performed in the opposite direction, i.e. from the
input of G2 to its output. This yields the same number of
latch while skew is reduced to S4 = 5. Since the skews are
the same in both retiming moves in this particular example,
we pick Figure 4(b) due to its less number of latches.

Note that the use of both retiming and time borrowing al-
lows retiming to be performed in both positive and negative
directions whereas the conventional retiming is performed
in only one direction. This is a key benefit of using time
borrowing along with retiming.

4.3 Determine Final Clock Period
After we convert skew to mix of retiming and time borrow-

ing, the remaining skews are removed by increasing the clock
period. Consider the combinational block between latches i
and j, denoted by i ; j, as shown in Figure 5. Its maxi-
mum combinational delay is Tdq + Dij ; the amount of time
borrowing is Pj − Pi, which has to be subtracted from the
maximum combinational delay when we decide the clock
period; the effect of skew is Sj − Si, which also has to be
subtracted from the maximum combinational delay, but we
now regard it as zero. Therefore, the clock period with zero

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers378

skew is given by

T0−skew = max
∀i;j

[Tdq + Dij − (Pj − Pi)] . (14)

Once T0−skew is determined, logic paths that violate hold
time constraints are fixed by introducing extra buffers [21].
Note that this may further increase the clock period due
to finite number of buffer sizes available in library and the
mismatch between rise- and fall-delay of buffers

5. EXPERIMENTAL RESULTS

5.1 Experimental Setting
We carried out experiments on a set of sequential circuits

taken from the ISCAS and ITC benchmarks, as well as on
some circuits extracted from open cores [22]. The second
and third columns of Table 1 report the number of com-
binational gates and the number of pulsed-latches of each
circuit, after it is synthesized with SIS [23]. A gate library
used for technology mapping during the synthesis was con-
structed for 22 gates, which were based on 45-nm commer-
cial technology. The fourth column shows the initial clock
period, where all latches are driven by a single pulse width of
132 ps, which is minimum value available in the technology.
The fifth column reports the clock period after (ideal) clock
skew scheduling (Tcss), followed by fixing hold violations;
thus, it serves as a lower bound.

We designed five different pulse generators with pulse width
of 132-, 192-, 252-, 312-, and 372-ps. Each pulse generator
consists of an inverter, a delay cell, and an AND gate; it was
designed to drive up to 10 latches with a slew constraint of
45 ps, which was found to be an upper bound for safe latch-
ing of data.

5.2 Clock Period
The heuristic algorithm presented in Section 4 was imple-

mented in SIS. The clock period obtained by the heuristic
(normalized to Tcss) is reported in the sixth column of Ta-
ble 1; it is very close to Tcss in all examples with average of
1.03×. This was achieved with moderate increase of latches,
16% on average, as reported in the seventh column. The
corresponding figures from the conventional retiming [15]
are shown in the last two columns as a reference of com-
parison; the clock period is 1.11× of Tcss with 27% increase
of latches on average. In retiming, a gate delay is typically
considered a constant. Retiming move, however, causes the
change in the delay of some gates due to the change in their
load capacitance and input transition time. This is taken
into account in our implementation of retiming by perform-
ing an incremental timing analysis; any retiming move that
increases, rather than decreases, the clock period is rejected.
This is why the number of extra latches introduced by re-
timing, as reported in the last column, is not significantly
large (considering the typical numbers, for example [15]); it
also explains the inability of retiming to reduce the clock
period beyond that reported in the eighth column. On the
other hand, the proposed heuristic approach, which com-
bines retiming and time borrowing, can further reduce the
clock period with less use of extra latches due to the flexi-
bility offered by time borrowing.

The distribution of pulse widths after running the heuris-
tic algorithm is shown in Figure 6, which demonstrates the
numerical domination of the narrowest pulse of 132 ps. When

0%

20%

40%

60%

80%

100%

372 ps
312 ps
252 ps
192 ps
132 ps

s838 s1423 s9234 s13207 s38417 t400 t48 ps2 i2c usbc

Figure 6: Distribution of pulse widths.

14

16

18

20

22

24

26

28

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

T
o
p
t
/

T
c
s
s

|P| = 2 |P| = 3 |P| = 4 |P| = 5 Retiming

 P
L
s
 (

%
)

!

Heuristic

Figure 7: Comparison of Topt/Tcss and ∆PLs between
heuristic with different size of pulse width library
(|P|) and retiming.

we restrict the number of available pulse widths to 2, 3, and
4 (starting from 132 ps), the average clock period and the
number of extra latches are shown in Figure 7, which also
shows the figures from Table 1 (|P| = 5 and retiming) for
comparison. As we have more pulse widths available in a
library, we have more benefit both in the clock period and
the number of extra latches, but with marginal improvement
beyond three pulse widths.

The clock period at each step of the heuristic (normalized
to Tcss) is illustrated in Figure 8 for four sample circuits; the
initial clock period when we use flip-flops instead of latches
is also shown to highlight the benefit of pulsed-latches for a
higher performance. It is again clear that Topt can be made
close to Tcss for all examples. The clock period before and
after fixing hold time violations remain almost constant in
all examples.

6. CONCLUSION
Clock skew has become the unreliable way of optimizing

sequential circuits due to increasing within-die process varia-
tions with technology scaling. Retiming, on the other hand,
has a limitation in practical use due to the large increase
of sequential elements. To optimize pulsed-latch-based cir-
cuits, we have used both retiming and time borrowing, where
the latter is available even in pulsed-latches as long as pulse
is wider than the setup time. The ILP approach has been
taken to lay a theoretical foundation; the heuristic approach
has been proposed for a practical use of optimization. The
Monte Carlo simulation of five pulse widths, which we have
tried in the experiments, shows the standard deviation of

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 379

Table 1: Comparison of the clock period (Topt), normalized to Tcss, and the number of extra pulsed-latches
(∆PLs) between the proposed heuristic and conventional retiming

Benchmark Tini Tcss Heuristic Retiming
Name # Gates # PLs (ps) (ps) Topt (×) ∆PLs Topt (×) ∆PLs

s838 403 32 590 419 1.07 11 1.21 10
s1423 740 74 1733 1510 1.03 13 1.08 14
s9234 1495 135 797 734 1.04 18 1.04 30
s13207 3499 490 981 862 1.01 6 1.07 6
s38417 12458 1463 899 852 1.02 61 1.06 64
t400 2847 176 1104 918 1.02 39 1.20 113
t48 3278 216 1126 968 1.03 76 1.10 138
ps2 2590 185 891 711 1.06 30 1.16 90
i2c 1312 129 980 814 1.01 7 1.03 14

usbc 2619 402 649 541 1.04 38 1.20 33

Average 1.03 16% 1.11 27%

1.00

1.05

1.10

1.15

1.20

1.25

Tini
(with F/F)

Tini Tcss Topt
(before
hold fix)

Topt
(after

hold fix)

t400

i2c

s13207

s1423

Figure 8: Clock period at each step of the heuristic,
normalized to Tcss.

pulse width ranging from 4.1% to 6.8% of its mean, which
suggests that the combined time borrowing and retiming is
indeed the reliable way to optimize pulsed-latch circuits.

References
[1] D. Chinnery and K. Keutzer, Closing the Gap Between ASIC

& Custom, Kluwer Academic Publishers, 2002.

[2] H. Partovi et al., “Flow-through latch and edge-triggered
flip-flop hybrid elements,” in Proc. IEEE Int. Solid-State
Circuits Conf., Feb. 1996, pp. 138–139.

[3] S. Kozu et al., “A 100 MHz 0.4W RISC processor with
200 MHz multiply-adder, using pulse-register technique,” in
Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1996, pp.
140–141.

[4] A. Scherer et al., “An out-of-order three-way superscalar
multimedia floating-point unit,” in Proc. IEEE Int. Solid-
State Circuits Conf., Feb. 1999, pp. 94–95.

[5] L. Clark et al., “An embedded 32-b microprocessor core
for low-power and high-performance applications,” IEEE
Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1599–
1608, Nov. 2001.

[6] N. Kurd et al., “A multigigahertz clocking scheme for the
Pentium 4 microprocessor,” IEEE Journal of Solid-State
Circuits, vol. 36, no. 11, pp. 1647–1653, Nov. 2001.

[7] S. Naffziger et al., “The implementation of the Itanium 2
microprocessor,” IEEE Journal of Solid-State Circuits, vol.
37, no. 11, pp. 1448–1460, Nov. 2002.

[8] H. Ando et al., “A 1.3-GHz fifth-generation SPARC64 mi-
croprocessor,” IEEE Journal of Solid-State Circuits, vol. 38,
no. 11, pp. 1896–1905, Nov. 2003.

[9] J. Fishburn, “Clock skew optimization,” IEEE Trans. on
Computers, vol. 39, no. 7, pp. 945–951, July 1990.

[10] K. Carrig, “Chip clocking effect on performance for IBM’s
SA-27E ASIC technology,” IBM Micronews, vol. 6, no. 3,
pp. 12–16, 2000.

[11] S. Held et al., “Clock scheduling and clocktree construc-
tion for high performance ASICs,” in Proc. Int. Conf. on
Computer-Aided Design, Nov. 2003, pp. 232–239.

[12] H. Lee, S. Paik, and Y. Shin, “Pulse width allocation with
clock skew scheduling for optimizing pulsed latch-based se-
quential circuits,” in Proc. Int. Conf. on Computer-Aided
Design, Nov. 2008, pp. 224–229.

[13] C. Chiang and J. Kawa, Design for Manufacturability and
Yield for Nano-Scale CMOS, Springer, 2007.

[14] C. Leiserson, F. Rose, and J. Saxe, “Optimizing synchronous
circuitry by retiming,” in Proc. CalTech Conf. on VLSI,
Mar. 1983, pp. 23–36.

[15] S. Sapatnekar and R. Deokar, “Utilizing the retiming-skew
equivalence in a practical algorithm for retiming large cir-
cuits,” IEEE Trans. on Computer-Aided Design, vol. 15,
no. 10, pp. 1237–1248, Oct. 1996.

[16] S. Sapatnekar, Timing, Kluwer Academic Publishers, 2004.

[17] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1-6, pp. 5–35, June 1991.

[18] D. Singh and S. Brown, “Constrained clock shifting for field
programmable gate arrays,” in Proc. Int. Symp. on Field-
Programmable Gate Arrays, Feb. 2002, pp. 121–126.

[19] Y. Kohira and A. Takahashi, “Clock period minimization
method of semi-synchronous circuits by delay insertion,”
in Proc. Asia-Pacific Conf. on Circuits and Systems, Dec.
2004, pp. 533–536.

[20] C. Lin and H. Zhou, “Clock skew scheduling with delay
padding for prescribed skew domains,” in Proc. Asia South
Pacific Design Automation Conf., Jan. 2007, pp. 541–546.

[21] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli,
“Minimum padding to satisfy short path constraints,” in
Proc. Int. Conf. on Computer-Aided Design, Nov. 1993, pp.
156–161.

[22] http://www.opencores.org/.

[23] E. Sentovich et al. May 1992, Tech. Rep. UCB/ERL M92/41.

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers380

